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Abstract

Accurate simulation of multiphase flow in subsurface formations is challenging, as the formations span large length
scales (km) with high resolution heterogeneous properties. To deal with this challenge, different multiscale methods
have been developed. Such methods construct coarse-scale systems, based on a given high-resolution fine-scale system.
Furthermore, they are amenable for parallel computing, and allow for a posterior error control. When bridging the gap
between the different scales, these methods differ significantly from each other. One type of multiscale methods compute
local basis functions to map the solution; instead, homogenization methods consider (locally) periodic call problems to
determine the effective parameters at the relevant scale. It is yet unknown how these two methods compare with each
other, especially when applied to complex geological formations, with no separation of scales in the property fields. This
paper develops the first comparison benchmark study of these two methods, and extends their applicability to fully
implicit dynamic multilevel (ADM) simulations. At each time step, on the given fine-scale mesh and based on an error
analysis, the fully implicit system is solved on a dynamic multilevel grid. The entries of this system are obtained by
using multiscale local basis functions (ADM-MS), and, respectively, by parameter homogenization over local domains
(ADM-HO). Both sets of local basis functions (ADM-MS) and local effective parameters (ADM-HO) are computed at
the beginning of the simulation, with no further updates during the multiphase flow simulation. The two methods
are extended and implemented in the same open-source DARSim2 simulator (https://gitlab.com/darsim2simulator), to
provide a fair quality comparison for the different test cases. The results reveal insightful understanding of the two
approaches, and benchmarks the quality of their results for the given scenarios. In particular, it is reemphasized that
the test cases considered here include permeability fields with no clear scale separation. The development of this paper
sheds new lights on advanced multiscale methods for simulation of coupled processes in porous media.

Keywords: Multiscale, Homogenization, Algebraic dynamic multilevel, Multilevel multiscale, Adaptive mesh
refinement, Porous media, Multiphase flow, Fully implicit simulation, Reservoir simulation

1. Introduction1

Geological formations span large (km) length scales,2

having heterogeneous properties characterized at high res-3

olutions (cm and below). As for the uncertainty within the4

integrated field data, several realizations of equiprobable5

property fields are typically generated to study and simu-6

late the fluid flow dynamics within the formations. Classi-7

cal simulation approaches are too expensive for these stud-8

ies. Therefore, advanced simulation methods are required9

to allow for accurate representation of the heterogeneous10

properties, and, at the same time, provide efficient simu-11

lation framework to study multiple realizations [31, 33].12

∗Corresponding author

Model order reduction techniques have been developed 13

to provide meaningful approximate simulation framework, 14

in the sense that they are fast to be obtained for large-scale 15

computational domains. Note that any advanced method 16

of this type becomes field applicable only when it allows 17

for error reduction to any desired threshold value [26]. 18

Within the model order reduction techniques, two promis- 19

ing developments for next-generation simulators are (1) 20

multiscale [23, 30] and (2) homogenization (or upscaling) 21

[19] methods. 22

These approaches are different in the sense that the for- 23

mer method (multiscale) deals with crossing the solution 24

(e.g. pressure) across the scales [1, 32, 25, 14], while the 25

latter (homogenization) aims at development of effective 26

lower-resolution parameters (e.g. permeability or trans- 27

missibility) [20, 3, 21]. Moreover, multiscale basis func- 28

tions have been formulated purely algebraic [43], while the 29

same does not hold for homogenized (and other parameter- 30
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based upscaling e.g. flow-based upscaling) parameters.31

Specially integration of homogenized parameters within32

the fully implicit framework in an algebraic manner has33

not yet been developed so far. The developments of this34

work includes this achievement too.35

Both methods, at the same time, have many similari-36

ties. Both find their mapping strategy via local solutions37

of the original governing equations with local boundary38

conditions. Multiscale basis functions often times employ39

reduced-dimensional boundary conditions [42, 34], and the40

homogenization schemes employ periodic boundary condi-41

tions [5, 2]. Both methods are effective for global equations42

within the fully coupled system of local-global unknowns43

(e.g. global pressure and local saturation). Both have44

been extended to nonlinear and geologically complex mod-45

els [6, 29, 40]. Recent developments of these two classes of46

approaches have introduced fully-implicit dynamic multi-47

level simulation framework (ADM) in which heterogeneous48

detailed geo-models are mapped into adaptive dynamic49

coarser mesh [15, 24].50

The ADM method develops a fully-implicit discrete51

system for coupled flow and transport equations in which52

each equation can be represented at different resolution53

than the defined fine-scale one. More importantly, the54

procedure can be done fully algebraic based on an error55

threshold. In contrast to the rich existing literature on56

Adaptive Mesh Refinement (AMR) methods [10, 35, 11,57

38, 22, 37], ADM can be defined as an adaptive mesh58

coarsening strategy which is automatically applicable to59

heterogeneous and coupled systems [17].60

Irrespective of the choice of the dynamic mesh strategy,61

it is always a challenge to construct adaptive multiscale en-62

tries of the implicit systems.63

The ADM method so far has included multiscale basis64

functions [17]. Following ADM development, homogenisa-65

tion methods have been also developed for dynamic grids66

[6, 16]. Of great interest to the scientific community is67

the investigation of the homogenisation-based coarser sys-68

tem entries, and a benchmark study of the quality of the69

two approaches of ADM-multiscale (ADM-MS) and ADM-70

homogenized (ADM-HO) for coupled implicit multiphase71

flow scenarios.72

This paper develops such a unified framework, in which73

ADM method is extended to account for both multiscale74

and homogenisation schemes for multiphase flow simula-75

tions. This development makes it possible to allow for dif-76

ferent coarse-scale entries for dynamic simulations, and im-77

portantly to benchmark the two classes of multiscale and78

homogenization strategies. Important is that, once the ef-79

fective parameters are computed, all other homogenization80

procedures are implemented algebraically. This is done by81

introducing constant unity local basis, with the support82

of primal (non-overlapping) coarse-scale partitions. The83

multiscale ADM is implemented fully algebraic, since local84

basis functions are also solved algebraically over the over-85

lapping (dual) coarse grid domains [44]. Our development86

is made available to the public via an open-source DAR-87

Sim2 simulator, https://gitlab.com/darsim2simulator. 88

Numerical test cases are considered for the challeng- 89

ing highly heterogeneous SPE10 [13] and periodic fields. 90

These allow one to realise how homogenisation (or upscal- 91

ing) strategies would perform on field-relevant test cases. 92

The number of active grid cells, pressure and saturation 93

errors, and the solution maps are all reported in details. 94

The development of this paper sets a new light in appli- 95

cation of multiscale and upscaling (i.e. homogenization) 96

approaches in advanced next-generation environments for 97

field-relevant simulation scenarios. 98

The paper is structured as follows. Next, in Section 99

2, the governing equations are briefly revisited. Section 3 100

presents the computational framework for both multiscale 101

and homogenization ADM methods. Section 4 presents 102

the test cases and finally the paper is concluded in Section 103

5. 104

2. Governing equations 105

Mass balance for two-phase flow in porous media at 106

continuum (Darcy) scale reads 107

∂

∂t
(φρiSi)−∇ · (ρiλi · (∇p− ρig∇z)) = ρiqi, ∀i ∈ {α, β}.

(1) 108

Here, φ is the porous medium porosity, ρ [kg/m2] is the 109

phase density and S is the phase saturation. The phase 110

mobility λ is equal to KKri/µi, where K [m2] is the rock 111

permeability, Kri is the phase relative permeability (func- 112

tion of phase saturation) and µ [Pa.s] is the phase viscosity. 113

In addition, p [Pa] is the pressure, g [m/s2] is the gravita- 114

tional acceleration which acts on ∇z direction and q [1/s] 115

is the phase source term. The constraint of Sα + Sβ = 1 116

makes the above equations well-posed for 2 unknowns of 117

Sα (in short from here on, S) and p. 118

The fully-implicit coupled simulation approach [8] es- 119

timates all the parameters at next time step (n + 1). As 120

such, the semi-discrete nonlinear residual for the phase 121

i ∈ {α, β} reads 122

Rn+1
i = [ρiqi]

n+1 − (φρiSi)
n+1 − (φρiSi)

n

∆t

+∇ · (ρiλi · (∇p− ρig∇z))n+1.

(2) 123

For finding the solution pair (pn+1, Sn+1) one needs to
employ a linearization scheme. Here we restrict the discus-
sion to the Newton scheme, which is 2nd-order convergent,
but requires a starting point that is close enough to the
solution. In other words, the time step may be subject
to restrictions depending also on the mesh size. Alterna-
tively, one may consider approaches like the modified Pi-
card [12] or the L-Scheme [36], which are less demanding
from computational point of view, or more robust w.r.t.
the starting point or the discretization mesh, but converge
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slower than the Newton scheme. Such schemes are ana-
lyzed in [9] in multiscale framework. Applied to (2), the
Newton linearization reads

Rn+1 ≈ Rν +
∂R

∂p
|νδpν+1 +

∂R

∂S
|νδSν+1, (3)

through solving linear system Jνδxν+1 = −Rν , i.e.,[
∂Rα
∂p

∂Rα
∂S

∂Rβ
∂p

∂Rβ
∂S

]
︸ ︷︷ ︸

J

ν[
δp
δS

]
︸ ︷︷ ︸

δx

ν+1

= −
[
Rα
Rβ

]
︸ ︷︷ ︸

R

ν

(4)

In each time step, the linear Eq. (4) is solved iter-124

atively (inner loop) several times until nonlinear conver-125

gence (outer loop) is reached. It is clear that the com-126

putational complexity of the simulation depends highly127

on the complexity of the solution of this linear system.128

Advanced multiscale and homogenization methods aim at129

solving this linear system on a dynamic multilevel mesh.130

Note that, as shown before [15], the overall efficiency of any131

advanced method should include not only the speedup of132

solving the linear Eq. (4) but also the count of the Newton133

(outer) loops. Next, the ADM method based on multiscale134

and homogenisation formulations is presented.135

3. Dynamic Multilevel Simulation based on Mul-136

tiscale and Homogenization Methods137

3.1. ADM framework formulation138

The fully-implicit linear system (4) at fine scale is too139

expensive to be solved for real field scenarios. A multilevel140

dynamic mesh, as shown in Figure 1, is generated within141

ADM framework, based on an error estimate strategy. The142

error estimate is developed based on a front tracking cri-143

terion, i.e., it leads to employment of fine-scale grids only144

at sub-regions with sharp gradients. The fine-scale sys-145

tem is then algebraically reduced into this multilevel grid,146

through sequences of restriction and prolongation opera-147

tors. As the first step to obtain the ADM grid, sets of148

N l = N l
x × N l

y hierarchically nested coarse grids are im-149

posed on the fine-scale computational domain. Here, l in-150

dicates the coarsening level and γl is the coarsening ratio151

which is defined as152

γl = (γlx, γ
l
y) = (

N l−1
x

N l
x

,
N l−1
y

N l
y

), (5)153

for two-dimensional (2D) domains. The ADM grid is con-154

structed by assembling a combination of grid-cells at dif-155

ferent resolutions within a computational domain. By us-156

ing the sequence of restriction (R) and prolongation (P)157

operators, one can express the ADM system as158

R̂l−1
l . . . R̂0

1 J0 P̂
1
0 . . . P̂

l
l−1︸ ︷︷ ︸

JADM

δx̂ADM = − R̂l−1
l . . . R̂0

1 r0︸ ︷︷ ︸
R̂ADM

.

(6)159

Here, R̂l−1
l is the restriction operator which maps the 160

parts of the solution vector that are at level l−1 to level l. 161

Similarly, the prolongation operator P̂ll−1 maps the parts 162

of the solution vector that are at level l to level l−1. Once 163

the ADM system (6) is solved, on the multilevel mesh, the 164

approximated fine-scale solution (δx′0) can be acquired by 165

prolonging the ADM solution (δx̂ADM) i.e. 166

δx0 ≈ δx′0 = P̂1
0 . . . P̂

l
l−1 δxADM. (7) 167

The ADM Restriction (R̂l−1
l ) and prolongation (P̂ll−1) 168

operators are assembled using the static multilevel multi- 169

scale restriction (Rl−1
l ) and prolongation (Pll−1) operators 170

respectively. They are constructed only at the beginning 171

of the simulation and are kept unchanged throughout the 172

entire simulation. 173

The static prolongation operator Pll−1 is constructed 174

as an assembly of the locally computed basis functions at 175

each coarsening level l and reads 176

Pll−1 =

(
(Pp)

l
l−1 0

0 (PS)ll−1

)
Nl−1×Nl

. (8) 177

Here, (Pp)
l
l−1 and (PS)ll−1 are the two main diagonal 178

blocks corresponding to main unknowns (i.e., pressure p 179

and saturation S). In case of using homogenisation scheme 180

(i.e., ADM-HO, as will be described in Section 3.3), con- 181

stant basis functions for pressure are used. However, for 182

multiscale-based ADM (i.e., ADM-MS, as will be described 183

in Section 3.2) locally computed basis functions are used. 184

Note that the saturation prolongation operator for both 185

approaches are constant to unity function at all coarsen- 186

ing levels, which represents the conservative finite-volume 187

integration. 188

The static restriction operator Rl−1
l reads 189

Rl
l−1 =

(
(R)ll−1 0

0 (R)ll−1

)
Nl−1×Nl

. (9) 190

In this work, finite-volume restriction operator is used 191

to guarantee local mass conservation, i.e., 192

Rl−1
l (i, j) =

{
1 if cell i is inside coarser cell j,

0 otherwise.
(10) 193

3.2. ADM using multiscale (ADM-MS) 194

In ADM-MS method, the prolongation operator for 195

pressure is found based on multiscale basis functions. These 196

local basis functions are computed algebraically [43], based 197

on the pressure equation. In this study, the incompressible 198

flow equation (elliptic pressure equation) is used to con- 199

struct the multiscale basis functions [42]. An example of 200

a basis function is shown in Figure 2. 201
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Figure 1: Example of a ADM solution grid combining fine-scale res-
olution with 2 coarsening level. The three figures on top are the grid
structure at fine-scale, coarse level 1 and coarse level 2 resolution.
The figure below these three figures, show an ADM grid constructed
by the combination of these hierarchically nested grids. Lastly, the
figure at the very bottom is the saturation profile corresponding to
that ADM grid.

Figure 2: An example of a basis function belonging to the middle
coarse node of a heterogeneous 2D domain.

3.3. ADM using homogenization (ADM-HO) 202

Homogenization method can be used to construct the 203

effective properties at the dynamic multilevel mesh. The 204

effective properties at multilevel mesh are found (similar 205

as in ADM-MS) by solving local flow (pressure) equations 206

based on incompressible (elliptic) equation. 207

To develop ADM-HO system, a scale separation is as- 208

sumed. Further, by doubling the spatial variable into a 209

fast and a slow one, one assumes that all quantities in Eq. 210

(1) satisfy the homogenization ansatz theory, namely that 211

they can be expanded regularly in terms of the scale sep- 212

aration parameter and they are locally periodic w.r.t. the 213

fast variable. For theoretical details we refer to [28, 5, 18], 214

and to [4, 39, 7, 9, 41, 27] where these ideas are used to 215

develop effective numerical simulation schemes. 216

In a simplified framework, at each ADM level an effec- 217

tive permeability tensor Kl is computed locally for each 218

coarse cell Ωl and at level l as 219

Kl
i,j

∣∣∣∣
Ωl

=

∫
Ωl

(
K
(
ej +∇ωj

))
· ei dy. (11) 220

Here ωj are the periodic solutions of the micro-cell equa- 221

tion, which can be expressed as 222

−∇ ·
(
K
(
∇yωj + ej

))
= 0, for all y ∈ Ωl. (12) 223

Here {ej}dj=1 is the canonical basis of dimension d. To 224

guarantee the uniqueness of the solution ωj , next to its 225

periodicity, one assumes that the average value over the 226

cell Ωl is 0. 227

To determine the value of the permeability tensor at 228

each coarse cell Ωl, two micro-cell problems (12) are solved 229

for each spatial direction in 2D. Figure 3 provides an illus- 230

tration of these local solutions for a coarse element. 231

Figure 3: Example of the local solutions ωx (top right, for x-
direction) and ωy (bottom right, for y-direction) for a coarse cell
inside a 2D domain. The heterogeneous permeability field is also
shown for the entire domain (left).

Note that the local problems (12) capture the rapidly 232

oscillating characteristics within a coarse element, com- 233

pletely decoupled from other coarse elements. The homog- 234

enized parameters, like multiscale bases, are computed at 235

the beginning of the simulation. Figure 4 illustrates the 236

calculation of the effective permeability at different levels. 237
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Figure 4: Example of four different levels of homogenized perme-
ability values: fine scale (bottom right), coarse level 1 (bottom left),
coarse level 2 (top right) and coarse level 3 (top left).

Given a fine-scale permeability field K and the coars-238

ening ratios γl, the effective permeability tensors are com-239

puted. These values will be used for construction of coarse-240

scale system at a given sub-domain. Moreover, when the241

homogenized parameters are used, constant unity func-242

tions are employed to interpolate the coarse-scale solutions243

to the fine-scale ones. This is achieved by setting prolon-244

gation operators in Eq. (6) to unity.245

4. Simulation results246

To benchmark the homogenization and multiscale based247

solutions for dynamic mesh on heterogeneous media, two248

heterogeneous non-periodic permeability fields from the249

top and bottom layers of the SPE 10th Comparative So-250

lution Project [13] are considered. For both test cases, the251

computational domain entails 216 × 54 grid cells at fine-252

scale with ∆x = ∆y = 1[m]. No-flow condition is imposed253

on all boundaries. Reservoir initially contains oil and Wa-254

ter is injected from the injection well. Both fluids are255

assumed to be incompressible. Injection and production256

take place through introducing source terms (wells).257

Table 1 shows the input parameters of the fluid and258

rock properties used in all test cases.259

Table 1: Input parameters of fluid and rock properties.

Property value
Porosity (φ) 0.2
Water density (ρw) 1000 [Kg/m3]
Oil density (ρo) 1000 [Kg/m3]
Water viscosity (µw) 10−3 [Pa·s]
Oil viscosity (µo) 10−3 [Pa·s]
Initial pressure (p0) 107 [Pa]
Connate water saturation (Swc) 0 [-]
Residual oil saturation (Sor) 0 [-]
Injection pressure (pinj) 2× 107 [Pa]
Production pressure (pprod) 0 [Pa]

Numerical results of ADM-MS and ADM-HO meth- 260

ods will be compared to those obtained from fine-scale 261

reference permeability simulations. Both ADM methods 262

employ the coarsening ratio of 3 × 3 with two coarsening 263

levels. This is set due to the size of the domain. 264

4.1. Test case 1: SPE10 top layer 265

In this test case, one injection well and one production 266

well are placed in the bottom left corner and top right 267

corner of the domain, respectively. The simulation time 268

is t = 1000 [days] and the results are reported on 100 269

equidistant time intervals. 270

The permeability distribution of the SPE10 top layer 271

is shown in Figure 5. 272

Figure 5: Fine-scale permeability (Log10 scale) from top layer of the
SPE10 dataset.

Figure 6 shows the homogenized version of the per- 273

meability at 2 different levels. We highlight that the ho- 274

mogenized permeability at both coarse levels preserve the 275

structure of the original fine-scale permeability. The high 276

and low permeable zones remain clearly detectable. 277

(a) Level 1 (72 × 18 cells).

(b) Level 2 (24 × 6 cells).

Figure 6: Homogenized permeability of the top layer of the SPE10
with coarsening ratio 3.

The saturation and pressure fields at the final time step 278

are shown in Figure 7 and Figure 8, respectively. 279

Using an effective homogenized parameter for a coarse 280

cell with high and low permeable fine cells can lead to 281

higher flow leakage, compared with fine-scale and multiscale- 282

based approaches. This effect can be seen in Figure 7. 283

Figure 9 illustrates the adaptive mesh at 2000 days after 284

injection. Notice that the refinement of the permeability is 285

mostly dominant at the saturation front, due to the chosen 286

mesh refinement criterion. For this figure, the coarsening 287
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(a) ADM using homogenized permeabilities.

(b) ADM using multi-scale basis functions.

(c) Fine-scale (Reference solution).

Figure 7: Saturation profiles at 2000 days. The threshold value for
the front tracking criterion is ∆S = 0.3.

(a) ADM using homogenized permeabilities.

(b) ADM using multi-scale basis functions.

(c) Fine-scale (Reference solution).

Figure 8: Pressure profiles at 2000 days. The threshold value for the
front tracking criterion is ∆S = 0.3.

Figure 9: Adaptive mesh and homogenized permeability for the
SPE10 top layer test case. The threshold value for the front tracking
criterion is ∆S = 0.3.

threshold value is ∆S = 0.3, i.e. a cell is successively 288

coarsened if ∆S is lower than 0.3. 289

The error history maps for ADM-MS and ADM-HO
are shown in Figure 10. The relative errors, presented in
Figure 10 and Figure 12, are calculated with respect to the
fine-scale solution as

Error(S) =
‖Sref − SADM‖2
‖Sref‖2

(13)

Error(P ) =
‖Pref − PADM‖2
‖Pref‖2

. (14)

Figure 10: Comparison of the saturation and pressure error using
ADM-MS and ADM-HO and 3 different values for the front tracking
criterion.

The results indicate that the homogenization-based sim- 290

ulations have higher errors compared with the multiscale- 291

based simulations. They both have similar average usage 292

of active grid cells, with ADM-MS having slightly fewer 293

grid cells. This is shown in Figure 11. Note that grid cells 294

around wells are kept at the fine-scale resolution perma- 295

nently. Furthermore, for tighter error tolerance values, the 296

quality of the both approaches become comparable. 297

Figure 12 provides the average pressure and saturation 298

errors together with the average percentage of active grid 299

cells during the whole simulation time as functions of the 300

coarsening criterion threshold. 301

4.2. Test case 2: SPE10 bottom layer 302

The permeability distribution of the SPE10 bottom 303

layer is considered as the second test case. The location of 304

the injection and production wells are the top left and the 305

bottom right corners, respectively. The simulation time is 306

6



Figure 11: Comparison of the active grid cells using ADM-MS and
ADM-HO and 3 different values for the front tracking criterion.

Figure 12: Average errors for the pressure and saturation and average
active grid cells for each strategy (ADM-MS and ADM-HO).

20 [days]. All other simulation parameters are identical to307

the first test case.308

The permeability distribution of the SPE10 bottom309

layer is shown in Figure 13.310

Figure 13: Fine-scale permeability (Log10 scale) from bottom layer
of the SPE10 test case.

Figure 14 shows the homogenized permeability values311

at 2 different levels. In this case, the channelized patterns312

of the permeability are less visible. Due to the many high313

contrast channels, more active cells are employed com-314

pared with the SPE top layer, as shown in Figure 15.315

The saturation and pressure maps at the final time step316

are shown in Figure 16 and Figure 17, respectively.317

Similar to previous test cases, Figure 18 compares the318

error between the two ADM approaches. Moreover, in319

Figure 19 the percentage of active grid cells per each time-320

step is shown.321

Figure 20 illustrates average values of pressure and sat-322

uration errors, and percentage of active grid cells for each323

coarsening criterion threshold.324

(a) Level 1 (72 × 18 cells).

(b) Level 2 (24 × 6 cells).

Figure 14: Homogenized permeability of the SPE10 bottom layer
with coarsening ratio 3.

Figure 15: Refinement of the permeability of the bottom layer of the
SPE10 using ADM-HO after 20 days. The threshold value for the
front tracking criterion is ∆S = 0.3.

(a) ADM using homogenized permeabilities.

(b) ADM using multi-scale basis functions.

(c) Fine-scale (Reference solution).

Figure 16: Saturation profiles at 20 days. The threshold value for
the front tracking criterion is ∆S = 0.3.
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(a) ADM using homogenized permeabilities.

(b) ADM using multi-scale basis functions.

(c) Fine-scale (Reference solution).

Figure 17: Pressure profiles at 20 days. The threshold value for the
front tracking criterion is ∆S = 0.3.

Figure 18: Comparison of the saturation and pressure error using
ADM-MS and ADM-HO and 3 different values for the front tracking
criterion.

Figure 19: Comparison of the active grid cells using ADM-MS and
ADM-HO and 3 different values for the front tracking criterion.

Figure 20: Average errors for the pressure and saturation and average
active grid cells for both approaches (ADM-MS and ADM-HO)

The results indicate a noticeable difference in the errors 325

of ADM-MS and ADM-HO. The pressure error in ADM- 326

HO is significantly higher due to the fact that ADM-HO 327

uses homogenized effective parameters, instead ADM-MS 328

employs multisclae basis functions. Moreover, as the re- 329

sult of more accurate pressures, ADM-MS saturation error 330

is lower than that of ADM-HO. The difference of the per- 331

centage of active grid cells used in the two approaches is 332

less noticeable than the difference of the errors. However, 333

the ADM-HO uses more active grid cells especially in this 334

SPE10 bottom layer test case. 335

5. Conclusion 336

Homogenization and multiscale methods have been de- 337

veloped and evolved during the past decade as promising 338

advanced simulation approaches for heterogeneous large- 339

scale systems. In this work, the two methods were in- 340

vestigated, extended into a unified fully-implicit frame- 341

work, and benchmarked for simulation of multiphase flow 342

in porous media. It was shown that the two methods al- 343

low construction of coarser level systems, and both rely 344

on local solutions to find their corresponding maps. While 345

homogenization methods deliver effective parameters, mul- 346

tiscale methods find interpolation of the solution (pres- 347

sure) across scales. This is the main difference between 348

the two approaches. For highly heterogeneous test cases it 349

was shown that the two approaches provide accurate so- 350

8



lutions, while ADM-MS provided more accurate solutions351

compared with ADM-HO. The use of effective parame-352

ters for coarse cells with high and low permeable cells can353

lead to excessive leakage if an effective parameter is used354

instead of the basis function. Furthermore, it was very355

important to demonstrate solutions of ADM-HO for per-356

meability fields with no periodic structure. This illustrated357

the applicability of homogenization methods for problems358

with no separation of scales, if they are combined with an359

adaptive mesh strategy (ADM). Moreover, both methods360

were developed algebraic. Specially by setting constant361

unity prolongation operator, it was shown how ADM-HO362

can be developed in a straightforward manner. The study363

of this paper sheds new lights in application of multiscale364

and homogenization methods for real-field simulation of365

multiphase flow in porous media. On going study includes366

benchmark studies of ADM-HO and ADM-MS for 3D frac-367

tured porous media.368

6. Acknowledgements369

Hadi Hajibeygi was sponsored through Dutch Science370

Foundation (NWO) grant 17509, under Innovational Re-371

search Incentives Scheme Vidi. All authors acknowledge372

TU Delft DARSim group members for the fruitful discus-373

sions, specially Matteo Cusini and Jeroen Rijntjes for their374

helps regarding DARSim2 simulator. DARSim2 open-source375

simulator can be publically accessed via https://gitlab.com/darsim2simulator376

link.377

[1] Aarnes, J., Hou, T.Y., 2002. Multiscale domain decomposition378

methods for elliptic problems with high aspect ratios. Acta379

Math. Appl. 18, 63–76.380

[2] Abdulle, A., E, W., 2003. Finite difference heterogeneous multi-381

scale method for homogenization problems. J. Comput. Phys.382

191, 18–39.383

[3] Abdulle, A., E, W., Engquist, B., Vanden-Eijnden, E., 2012.384

The heterogenous multiscale method. Acta Numer. 21, 1–87.385

[4] Abdulle, A., Nonnenmacher, A., 2009. A short and versa-386

tile finite element multiscale code for homogenization problems.387

Computer Methods in Applied Mechanics and Engineering 198,388

2839–2859.389

[5] Allaire, G., 1992. Homogenization and two-scale conver-390

gence. SIAM Journal on Mathematical Analysis 23, 1482–391

1518. URL: https://doi.org/10.1137/0523084, doi:10.1137/392

0523084, arXiv:https://doi.org/10.1137/0523084.393

[6] Amanbek, Y., Singh, G., Wheeler, M.F., van Duijn, H., 2019a.394

Adaptive numerical homogenization for upscaling single phase395

flow and transport. Journal of Computational Physics 387, 117396

– 133. doi:https://doi.org/10.1016/j.jcp.2019.02.014.397

[7] Amanbek, Y., Singh, G., Wheeler, M.F., van Duijn, H., 2019b.398

Adaptive numerical homogenization for upscaling single phase399

flow and transport. Journal of Computational Physics .400

[8] Aziz, K., Settari, A., 2002. Petroleum Reservoir Simulation.401

Blitzprint Ltd., Cagary, Alberta.402

[9] Bastidas, M., Bringedal, C., Pop, I.S., Radu, F.A., 2019. Adap-403

tive numerical homogenization of nonlinear diffusion problems.404

arXiv:arXiv:1904.10665.405

[10] Bell, J.B., Lijewski, M.J., Pau, G.S.H., Almgren, A.S., 2009. A406

parallel second-order adaptive mesh algorithm for incompress-407

ible flow in porous media. Philos. T. Roy. Soc. A 367, 4633–4654.408

[11] Berger, M., Oliger, J., 1984. Adaptive mesh refinement for409

hyperbolic partial differential equations. J. Comput. Phys. 53,410

484–512.411

[12] Celia, M.A., Bouloutas, E.T., Zarba, R.L., 1990. A general 412

mass-conservative numerical solution for the unsaturated flow 413

equation. Water resources research 26, 1483–1496. 414

[13] Christie, M.A., Blunt, M.J., February, 2001. Tenth spe compar- 415

ative solution project: A comparison of upscaling techniques. 416

SPE 66599, presented at the SPE Symposium on Reservoir Sim- 417

ulation, Houston . 418

[14] Chung, E.T., Efendiev, Y., Lee, C.S., 2015. Mixed generalized 419

multiscale finite element methods and applications. Multiscale 420

Modeling & Simulation 13, 338–366. 421

[15] Cusini, M., Fryer, B., van Kruijsdijk, C., Hajibeygi, H., 2018. 422

Algebraic dynamic multilevel method for compositional flow in 423

heterogeneous porous media. Journal of Computational Physics 424

354, 593–612. doi:10.1016/j.jcp.2017.10.052. 425

[16] Cusini, M., Gielisse, R., Groot, H., van Kruijsdijk, C., Ha- 426

jibeygi, H., 2019. Incomplete mixing in porous media: Todd- 427

longstaff upscaling approach versus a dynamic local grid re- 428

finement method. Computational Geosciences 23, 373–397. 429

doi:10.1007/s10596-018-9802-0. 430

[17] Cusini, M., van Kruijsdijk, C., Hajibeygi, H., 2016. Algebraic 431

dynamic multilevel (adm) method for fully implicit simulations 432

of multiphase flow in porous media. Journal of Computational 433

Physics 314, 60 – 79. URL: http://www.sciencedirect.com/ 434

science/article/pii/S0021999116001583, doi:https://doi. 435

org/10.1016/j.jcp.2016.03.007. 436

[18] Duijn, C.J.v., Eichel, H., Helmig, R., Pop, I.S., 2007. Effec- 437

tive equations for two-phase flow in porous media: the effect 438

of trapping at the micro-scale. Transport in Porous Media 9, 439

411–428. 440

[19] E, W., 2011. Principles of Multi-Scale Modeling. Cambridge 441

University Press. 442

[20] E, W., Engquist, B., 2003. The heterogenous multiscale meth- 443

ods. Commun. Math. Sci. 1, 87–132. 444

[21] E, W., Engquist, B., Li, X., Ren, W., Vanden-Eijnden, E., 2007. 445

Heterogeneous multiscale methods: a review. Commun. Com- 446

put. Phys. 2, 367–450. 447

[22] Edwards, M., 1996. A higher-order godunov scheme cou- 448

pled with dynamical local grid refinement for flow in a porous 449

medium. Comput. Methods Appl. Mech Eng. 131, 287–308. 450

[23] Efendiev, Y., Hou, T.Y., 2009. Multiscale Finite Element Meth- 451

ods: Theory and Applications. Springer. 452

[24] Faigle, B., Helmig, R., Aavatsmark, I., Flemisch, B., 2014. Effi- 453

cient multiphysics modelling with adaptive grid refinement us- 454

ing a mpfa method. Computat. Geosci. 18, 625–636. 455

[25] Hajibeygi, H., Bonfigli, G., Hesse, M., Jenny, P., 2008. Iterative 456

multiscale finite-volume method. J. Comput. Phys. 227, 8604– 457

8621. 458

[26] Hajibeygi, H., Lee, S.H., Lunati, I., 2012. Accurate and efficient 459

simulation of multiphase flow in a heterogeneous reservoir by 460

using error estimate and control in the multiscale finite-volume 461

framework. SPE Journal 17, 1071–1083. 462

[27] Henning, P., Ohlberger, M., Schweizer, B., 2015. Adaptive het- 463

erogeneous multiscale methods for immiscible two-phase flow in 464

porous media. Computational Geosciences 19, 99–114. 465

[28] Hornung, U., 1997. Homogenization and Porous Media. vol- 466

ume 6. Springer Science & Business Media. 467

[29] HosseiniMehr, M., Cusini, M., Vuik, C., Hajibeygi, H., 468

2018. Algebraic dynamic multilevel method for embedded 469

discrete fracture model (f-adm). Journal of Computational 470

Physics 373, 324 – 345. URL: http://www.sciencedirect.com/ 471

science/article/pii/S002199911830456X, doi:https://doi. 472

org/10.1016/j.jcp.2018.06.075. 473

[30] Hou, T.Y., Wu, X.H., 1997. A multiscale finite element method 474

for elliptic problems in composite materials and porous media. 475

J. Comput. Phys. 134, 169–189. 476

[31] Jansen, J.D., Brouwer, D., Naevdal, G., Kruijsdijk, C.V., 2005. 477

Closed-loop reservoir management. First Break 23. 478

[32] Jenny, P., Lee, S.H., Tchelepi, H.A., 2003. Multi-scale finite- 479

volume method for elliptic problems in subsurface flow simula- 480

tion. J. Comput. Phys. 187, 47–67. 481

[33] de Moraes, R.J., Hajibeygi, H., Jansen, J.D., 2019. A multiscale 482

9



method for data assimilation. Computational Geosciences URL:483

https://doi.org/10.1007/s10596-019-09839-2, doi:10.1007/484

s10596-019-09839-2.485

[34] Moyner, O., Lie, K.A., 2016. A multiscale restriction-smoothed486

basis method for high contrast porous media represented on487

unstructured grids. Journal of Computational Physics 304, 46488

– 71. doi:https://doi.org/10.1016/j.jcp.2015.10.010.489

[35] Pau, G.S.H., Bell, J.B., Almgren, A.S., Fagnan, K., Lijewski,490

M.J., 2012. An adaptive mesh refinement algorithm for com-491

pressible two-phase flow in porous media. Computat. Geosci.492

16, 577592.493

[36] Radu, F.A., Kumar, K., Nordbotten, J.M., Pop, I.S., 2017. A494

robust, mass conservative scheme for two-phase flow in porous495
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