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SUMMARY

Abstract We present a linearization scheme for an interior penalty discontinuous Galerkin method for
two-phase porous media flow model which includes dynamic effects in the capillary pressure. The fluids
are assumed immiscible and incompressible, and the solid matrix non-deformable. The physical laws are
approximated in their original form, without using the global or complementary pressures. The linearization
scheme does not require any regularization step. Furthermore, in contrast with Newton or Picard methods,
there is no computation of derivatives involved. We prove rigorously that the scheme is robust and linearly
convergent. Numerical results, including examples in realistic, heterogeneous media are presented to sustain
the applicability of the scheme. Copyright c© 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Flow and transport processes in porous media are of high interest in many different fields of
application. In this sense we mention the geological CO2-storage [26], environmental pollution
[31], designing diapers [10], or filters. The mathematical models describing such phenomena are,
in general, highly non-linear and demanding in terms of the numerical solution. To resolve the non-
linearities, one usually uses the Newton or Picard methods, see e.g. [3, 6, 24], combination of them
[21, 23], or iterative IMPES [18, 19]. The Newton-scheme shows a local convergence with quadratic
order, however, if the initial guess is cloes enough to the solution, while Picard-iterations are more
robust but only linear convergent. For designing Newton or Picard methods for degenerate problems
as appearing in porous media flows, on needs to include a regularization step. We mention also the
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semi-smooth Newton method [20], which is a valuable alternative to Newton’s method especially
for multi-component flow. Its drawback is the relatively high implementation cost.

As mentioned, the Newton-scheme has a high convergence order, which makes it very attractive
for solving nonlinear problems. However, two aspects have to be taken into account. First, one has
to calculate the Jacobian matrix or at least a proper approximation of it for any iteration step, which,
in general, is computationally expensive. Second, to guarantee the convergence of the iteration, the
initial guess should be close enough to the solution. This aspect is analyzed e.g. in [27] for the
mixed finite element discretization of nonlinear elliptic problems, where the difference between the
initial guess and the exact solution should be of order hd (h being the mesh size and d the dimension
of the domain). For parabolic partial differential equations, a straightforward option is the solution
obtained at the previous time-step. Nevertheless, to make sure that this is indeed close enough, the
time-step has to be chosen sufficiently small, again of order hd. This restriction becomes more severe
when degenerate parabolic problems are considered. In this case, in locations where one of the
phases is not present, the permeability of this phase vanishes. This has two immediate consequence
for the numerical approximation, as the Jacobian becomes singular, leading to ill-conditioned linear
systems. To avoid this, one needs to regularize the problem, i.e. to consider perturbations of it
assuring that the problem remains non-degenerate. This is an additional source of errors in the
system. More important, the restriction on the time step becomes more severe in this case, as it also
involves the small regularization parameter as well (see [32]; similar issues appear for reactive flow
models with non-Lipschitz rates [31].

The above has motivated the linearization schemes proposed in [23, 28, 29, 30, 34, 36] for the
finite element, finite volume or the mixed finite element discretization of porous media flow models.
The idea of the linearization scheme is to add an additional term in the form of

L · (Solution−Current−Iteration− Solution−Old−Iteration),

with L being a parameter that has to be chosen sufficiently large. The robustness of such schemes
(also called L-schemes) for standard porous media flow models is proved in the papers mentioned
above. Although the convergence is linear, the L-scheme may even become faster than the Newton
method as it does not require to compute derivatives, while the linear systems to be solved within
each iteration are better conditioned (see [23], where also the possibility to combine the L-scheme
with the Newton iteration has also been discussed) and may even involve the same matrix for the
linear algebraic system, which offers the possibility to compute its factorization only once per time
step. Moreover, the L-scheme does not involve any regularization step.

Inspired by the results above, we propose a linear convergent iterative scheme for the two-phase
flow in porous media. Here we consider a non-standard mathematical model of pseudo parabolic
type, as it involves a dynamic term in the phase pressure difference - saturation relationship
(the dynamic capillarity), see [13, 14]. For this model a discontinuous Galerkin (dG) method
discretization is coupled with the backward Euler time stepping. For details we refer to [16],
where the convergence of the scheme is proved assuming that the capillary damping term is
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constant. Finally, the model formulation adopted here does not involve any global or complementary
pressure, as done in [29, 30]. We prove give a rigorous convergence proof for the L-scheme, and
provide numerical experiments confirming the theoretical findings. These experiments also include
heterogeneous media. To our knowledge, this is the first time when such a scheme is tested in the
case of a heterogeneous medium.

The structure of the paper is as follows. In Section 2, we introduce the mathematical model for
two-phase flow with dynamic capillarity, in Section 3 we present the numerical solution strategy and
approximation with an interior penalty discontinuous Galerkin approximation. Section 4 is devoted
to the convergence analysis of the presented linearization scheme. In order to show the versatility
of the scheme, relevant numerical examples are presented in Section 5. Both homogeneous and
heterogeneous porous media are considered.

2. MATHEMATICAL MODEL FOR TWO-PHASE FLOW IN POROUS MEDIA WITH
DYNAMIC CAPILLARITY

In this section we present the mathematical model and give the notion of a weak solution. Also, the
working assumptions are provided.

Governing equations We consider two incompressible and immiscible fluids flowing through a
non-deformable porous medium. The medium occupies the bounded polygonal domain Ω ⊂ Rd,
d = 2, 3. Its boundary is denoted by Γ. The flow takes place in the time interval (0, T ] with given
T > 0. Under these assumptions, mass conservation holds for each phase, i.e. for each phase α one
has

∂t(Sαφρα) +∇ · (ραuα) = qα. (1)

Here α ∈ {n,w} stands for non-wetting and wetting phase, respectively. Further, φ denotes the
porosity of the medium, ρα the fluid phase densities, qα the volumetric sources or sinks, and uα the
fluid phase Darcy velocities. The latter are given by the Darcy laws

uα = −λα(Sw)K∇pα, (2)

where, pα are the phase pressures, K the intrinsic permeability tensor, and λα =
kr,α
µα

the fluid

mobility functions with relative permeabilities kr,α and dynamic viscosities µα. The nonlinear
functions kr,α are determined experimentally and therefore assumed known here. We refer to [26]
for more details regarding the above equations and modeling of two-phase flow in porous media.

Closure relationships The four equations above, (1)-(2), are involving six unknown quantities:
Sα, pα,uα. To close the system, one needs two additional equations. The first follows from the
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assumption that only two fluid phases are encountered in the system. this gives

Sw + Sn = 1. (3)

The second equation relates the phase pressure difference to the saturation of (say) the wetting phase

pc := pn − pw = pc(Sw, ∂tSw) = pc,eq(Sw)− τ(Sw)∂tSw = pc,eq(Sw)− ∂tT (Sw) . (4)

In the above, pc,eq is the capillary pressure at equilibrium, and τ(Sw) is a material depending
term, often called capillary damping coefficient; its primitive is denoted by T (·). Observe that it is
common in the literature to leave the ∂tSw term out in (4), and reduce it to a nonlinear relationship
between pc and Sw. Such models are called here equilibrium models. The τ(Sw)-term is accounting
for dynamic capillarity effects in the model, and it is motivated by experimental results like the ones
in e.g, [9]. There saturation overshoot effects have been observed when letting water infiltrate into a
homogeneous porous column that is initially dry. Such saturation profiles are ruled out in standard,
equilibrium models, as their solution is satisfying a maximum principle. We refer to [12, 13, 14] for
details on the origin and necessity of the dynamic capillarity and on the modelling.

Primary variables The six-equation model (1)-(4) can be reduced to the following three-equation
system:

−∂t(Swφ)−∇ · (λn(Sw)K∇pn) = qn,

∂t(Swφ)−∇ · (λw(Sw)K (∇pn −∇pc)) = qw,

pc = pc,eq(Sw)− τ(Sw)∂tSw = pc,eq(Sw)− ∂tT (Sw).

(5)

In the above, the following variables have been chosen as primary: pn, Sw, and pc. Note that, for
readability, below we still use pw = pn − pc, although it is a secondary variable. A similar choice
of the primary variables is made in [24, 17].

Initial and boundary conditions To close the system, we prescribe the following initial and
boundary conditions:

For all x ∈ Ω and at t = 0 : Sw(x, 0) = s0(x) . (6)

For all x ∈ ΓD and t ∈ [0, T ] : pc(x, t) = pDc (x) , pn(x, t) = pDn (x). (7)

Observe that extending (53) up to the boundary Γ provides boundary data for Sw as well.
For simplicity we only consider here Dirichlet boundary conditions. Moreover, the boundary

values are assume constant in time. At the expense of additional technical aspects it is possible to
extend these results so that other types of conditions are included.

Notations In general, solutions in classical sense are not available. We here we consider weak
solutions, whose definition is involving abstract functional spaces. The following notations are
common in the functional analysis/partial differential equations. For 1 ≤ p <∞, Lp(Ω) is the space
of p-integrable functions (in the sense of Lebesgue), while the elements of L∞(Ω) are essentially
bounded functions; the corresponding norms are ‖ · ‖Lp(Ω). ‖ · ‖ stands for the L2 norm. ‖ · ‖Wk,p(Ω)

denotes the standard norm on W k,p(Ω), the space of functions admitting Lp weak derivatives up to
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order k. For simplicity, we represent W k,2(Ω)-norm with ‖ · ‖Ω,k and use the notation Hk(Ω) for
W k,2(Ω). Hk

0 (Ω) denotes the space of Hk(Ω) functions that vanish on the boundary (in the sense
of traces). With X being any Banach space, L2(0, T ;X) denotes the space of Bochner-integrable,
X-valued function on [0, T ], while H1(0, T ;X) denotes the space of functions in L2(0, T ;X) with
a weak time-derivative in the same space. Finally, the boundary values should be interpreted in the
sense of traces on Γ, which will lie in spaces like Lp(Γ), Hk(Γ), etc. In particular, by H

1
2 (Γ) we

mean the traces on Γ of H1(Ω) functions.

Weak formulation A weak solution to (5)-(7) solves

Problem 1 (Weak formulation)
Find the triple (Sw, pn, pc) s.t. Sw ∈ H1([0, T ], H1(Ω)), Sw = s0 at t = 0, pn − pDn ∈
L2([0, T ], H1

0 (Ω)), pc − pDc ∈ L2([0, T ], H1
0 (Ω)), and for all ψp ∈ H1

0 (Ω), ψs ∈ H1
0 (Ω), and almost

every t ∈ [0, T ] it holds

−
∫

Ω
∂tSwφψp +

∫
Ω
λn(Sw)K (∇pn) · ∇ψp =

∫
Ω
qnψp,∫

Ω
∂tSwφψp +

∫
Ω
λw(Sw)K (∇pn −∇pc) · ∇ψp =

∫
Ω
qwψp,∫

Ω
pcψs =

∫
Ω
pc,eq(Sw)ψs −

∫
Ω
τ∂tSwψs.

(8)

We refer to [5, 4, 17] for existence and uniqueness results for Problem 1.

Assumptions The analysis below is carried out under the following assumptions:

(A1) For the initial and boundary data one has s0 ∈ H1(Ω), pDn (x) ∈ H 1
2 (Γ) and a function

sD(x) ∈ H 1
2 (Γ) exists s.t. pDc (x) = pc,eq(s

D(x)). Further, the initial and boundary conditions
are compatible.

(A2) The permeability matrix K ∈ Rd×d is symmetric and positive definite, i.e. there exist two
constants κ and κ, s.t., for any vector x ∈ Rd, the following holds:

κ‖x‖2 ≤ xTKx ≤ κ‖x‖2

(A3) The equilibrium capillary pressure function pc,eq(·) is in C2(R), and is assumed positive,
bounded and decreasing. Further we assume that there exist Lpc,eq , lpc,eq > 0 such that for all
S ∈ R it holds

0 < lpc,eq ≤ p′c,eq(·) ≤ Lpc,eq <∞. (9)

(A4) The functions λw(·) and λn(·) are Lipschitz-continuous and two constants λα, λα > 0 exist
such that for all S ∈ R,

0 < λα < λα(S) < λα <∞, (α ∈ {w, n}). (10)

(A5) The dynamic capillary pressure function τ(·) is in C2(R), positive, bounded, and decreasing.
Letting T (·) denote its primitive, we assume that there exist LT , lT > 0 such that for all S ∈ R
one has

0 < lT ≤ τ(S) ≤ LT <∞. (11)
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3. NUMERICAL APPROXIMATION OF TWO-PHASE FLOW IN POROUS MEDIA WITH
DYNAMIC CAPILLARITY

In this section we present the discretization of (5)-(7). The scheme uses the backward Euler time
stepping and and dG method for the discretization in space. Also, we introduce the linear, iterative
L-scheme employed for solving the nonlinear systems appearing at each time step. Before doing so
we present some notations that will be used below.

Preliminaries For the spatial discretization we let T be a decomposition of the domain Ω into N
non-degenerate elements Tr. We assume that T is admissible in the sense of the Definition 2.1 in Di
Pietro and Ern (2010) [7]. Let F denote the union of all faces Fj , and let h be the maximal diameter
of the elements.

Given Tr ∈ T and Fr ∈ F , we define a set F (Tr) of all the faces associated with the element Tr,
s.t.,

F (Tr) :=




⋃

Fj∈F
Fj : Fj ⊂ Tr



 ,

and, a set T (Fr) of all the elements sharing the face Fr, s.t.,

T (Fr) :=




⋃

Tj∈T
Tj : Fr ⊂ Tj



 .

In the conformig case, T (Fr) consists of exactly two elements.

With each face F ∈ F connecting element Ti and Tj , we associate a normal-vector ~n directed
from Ti to Tj (j > i).

Given k ∈ N, Πk(T ) denotes the space of polynomials on T with degree ≤ k. The dG method
provides a piecewise polynomial approximation for the saturation and the pressures. Specifically,
Sw is approximated in the broken Sobolev space with polynomials of order ks

V sh (Ω) := {v ∈ L2(Ω) : v|T ∈ Πks(T ) for all T ∈ T } , (12)

whereas for the pressures pn and pc we consider the broken Sobolev space with polynomials of
order kp

V ph (Ω) := {v ∈ L2(Ω) : v|T ∈ Πkp(T ) for all T ∈ T } . (13)

Let Vh(Ω) be any broken Sobolev space of piecewise polynomials of maximal degree k ∈ N, and
∈ Vh(Ω). Let F ∈ F and Ti, Tj ∈ T (F ). Then ψi, ψj are the traces of ψ on F from the sides of

Ti, respectively Tj : ψi = (ψ|T i)|F , ψj = (ψ|T j )|F . These are used to we define the jump J·K and
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the average {·} over the face F as

when F is an interior face : JψK =
(
ψi − ψj

)
and {ψ} =

1

2

(
ψi + ψj

)
, (14)

when F is a boundary face : JψK = ψi and {ψ} = ψi. (15)

where, the interior face connects elements T i and T j with i < j, and the boundary face has no
element adjacent to Ti.

For proving the convergence of the scheme we use the following norm on the broken Sobolev-
Space

‖v‖2Ω,DG :=
∑

Tr∈T
‖∇v‖2Tr,0 +

∑

Fr∈F

1

|Fr|
‖JvK‖2Fr,0, (16)

and the lemma below (see e.g. [7]):

Lemma 1
Let k ∈ N and Vh(Ω) the broken Sobolev-Space of piecewise polynomials of
maximal degree k. Given q such that

1 ≤ q ≤ 2d

d− 2
if d ≥ 3, or

1 ≤ q <∞ if d = 2 ,

there exists a constant Ĉ depending on the maximal polynomial degree k, the mesh-
parameters and |Ω| (the volume of Ω) such that for all v ∈ Vh(Ω) one has

‖v‖Lq(Ω) ≤ Ĉ‖v‖Ω,DG . (17)

Further, the following trace inequalities will be used (see e.g. [35, 33, 8])

Lemma 2
With γ0 denoting the trace operator, there exists a constant Ct independent of the
mesh size h such that for any T ∈ T with F ∈ F (T ) and for all v ∈ Hk(T ), the
following holds:

‖γ0v‖0,F ≤ Ct
√

1

|F | (‖v‖0,T + |F |‖∇v‖0,T ) (18)

Further, a function f(·) exists such that if v ∈ Πk(T ) one has

‖γ0v‖0,F ≤ Ct

√
f(k)

|F | ‖v‖0,T . (19)
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Also, the following elementary lemma will be used (see [11])

Lemma 3
Let C̃ be the maximal number of elements sharing one face, and let A : T → [0,∞)

be a function defined on the triangularization T . Then, the following inequality holds:

∑

Fr

∑

T (Fr)

A(T ) ≤ C̃
∑

Tr

A(Tr)

Finally, we will use the following elementary (in-)equalities for real numbers. Let a, b ∈ R and
ε > 0, then

(a− b) · a =
1

2
(a− b)2 +

1

2
(a2 − b2) (20)

ab ≤ ε

2
a2 +

1

2ε
b2 (21)

Discretization in time For the discretization in time, we use an implicit Euler scheme. LetN ∈ N
and ∆t = T/N . We divide the time domain [0, T ] into N uniform intervals and denote the i-th
discrete time-step by ti (ti = i ·∆t).

Given the function g : [0, T ]× Ω→ R, its time derivative at t = tn+1 is approximated by

∂−gn+1 :=
g(tn+1, x)− g(tn, x)

∆t
. (22)

For simplicity we write gn = g(tn, ·).

With this, we obtain a sequence of time-discrete problems (n = 0, . . . , N − 1):

Problem 2 (Time discrete problem)
Given snw, pnn and pnc , find sn+1

w , pn+1
n and pn+1

c , s.t., the following holds:

sn+1
w − snw

∆t
φ+∇ ·

(
λn(sn+1

w )K∇pn+1
n

)
= 0

sn+1
w − snw

∆t
φ+∇ ·

(
λw(sn+1

w )K∇(pn+1
n − pn+1

c )
)

= 0

pn+1
c = pc,eq(s

n+1
w )− T (sn+1

w )− T (snw)

∆t

Observe that, at each time step, this results into a nonlinear problem. For solving it we propose
an iteration scheme that builds on the ideas in [23, 28, 29, 30, 34, 36] (the ”L”-scheme). The idea
is to construct a sequence of triplets (sn,i−1

w , pn,i−1
n , pn,i−1

c ) converging as i→∞ to the solution
(sn+1
w , pn+1

n , pn+1
c ) of Problem 2. Recalling Assumptions (A3) and (A5), we let Ls, Ls,T > 0 be
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two positive constants satisfying

Ls ≥ Lpc,eq and Ls,T ≥ LT (23)

and define the following linearization scheme:

Problem 3 (Linearization scheme)
Let i > 0 and sn,i−1

w , pn,i−1
n , pn,i−1

c be given. Find sn,iw , pn,in , and pn,ic such that

− sn,iw − snw
∆t

φ+∇ ·
(
λn(sn,i−1

w )K∇pn,in
)

= 0

sn,iw − snw
∆t

φ+∇ ·
(
λw(sn,i−1

w )K∇(pn,in − pn,ic )
)

= 0

Ls(s
n,i
w − sn,i−1

w )− Ls,T
(
sn,iw − sn,i−1

w

∆t

)
+ pn,ic − pc,eq(sn,i−1

w ) +
T (sn,i−1

w )− T (snw)

∆t
= 0

Remark 1
Observe that the first two equations are nothing but the semi-implicit discretization of the
corresponding in Problem 2, whereas the third equation includes two additional terms involving
the parameters Ls and Ls,T . Formally one can see that if the scheme is convergent, these terms are
vanishing and the limit solves the nonlinear time discrete problem. Below we prove that the scheme
converges indeed, and that this convergence holds for any initial guess. However, since this is an
evolution problem, it is natural to use the solution at the previous time step at starting point, i.e.
sn,0w = snw, pn,0n = pnn, and pn,0c = pnc .

For the discretization in space, we use a discontinuous Galerkin scheme as presented in [16].
When applied to the time discrete problem 2 obtained at at time step tn+1, this results into the
following fully-discrete algebraic system

Problem 4 (Discrete problem at tn+1)
Let Pnn ∈ V ph (Ω), Pnc ∈ V ph (Ω), and Snw ∈ V sh (Ω). Find Pn+1

n ∈ V ph (Ω), Pn+1
c ∈ V ph (Ω), and
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Sn+1
w ∈ V sh (Ω), s.t., for all ψs ∈ V sh (Ω), ψn ∈ V ph (Ω), and ψw ∈ V ph (Ω), the following holds:

PDE-1:
∑

Tr∈T

∫

Tr

−∂−Sn+1
w φψn +

∑

Tr∈T

∫

Tr

λn(Sn+1
w )K∇Pn+1

n ∇ψn

−
∑

Fr∈F

∫

Fr

{λn(Sn+1
w )K∇Pn+1

n · ~n}JψnK

+ θ
∑

Fr∈F

∫

Fr

JPn+1
n K{λn(Sn+1

w )K∇ψn}+ σn
∑

Fr∈F

∫

Fr

f(kp)

|Fr|
JPn+1
n KJψnK

= θ
∑

Fr∈Γ

∫

Fr

JpDn K{λn(sD)K∇ψn}+ σn
∑

Fr∈Γ

∫

Fr

f(kp)

|Fr|
JpDn KJψnK (24)

PDE-2:
∑

Tr∈T

∫

Tr

∂−Sn+1
w φψw +

∑

Tr∈T

∫

Tr

λw(Sn+1
w )K∇(Pn+1

n − Pn+1
c )∇ψw

−
∑

Fr∈F

∫

Fr

{λw(Sn+1
w )K∇(Pn+1

n − Pn+1
c ) · ~n}JψwK

+ θ
∑

Fr∈F

∫

Fr

{λw(Sn+1
w )K∇ψw · ~n}JPn+1

n − Pn+1
c K

+ σw
∑

Fr∈F

∫

Fr

f(kp)

|Fr|
JPn+1
n − Pn+1

c KJψwK

= θ
∑

Fr∈Γ

∫

Fr

{λw(sD)K∇ψw · ~n}JpDn − pDc K

+ σw
∑

Fr∈Γ

∫

Fr

f(kp)

|Fr|
JpDn − pDc KJψwK (25)

ODE-Pc:
∑

Tr∈T

∫

Tr

Pn+1
c ψs =

∑

Tr∈T

∫

Tr

pc,eq(S
n+1
w )ψs −

∑

Tr∈T

∫

Tr

∂−T (Sn+1
w )ψs (26)

The parameters σn and σw penalize discontinuities in the solutions (i.e., jumps) over the faces.
The choice of θ = −1 gives the non-symmetric- (NIPG) scheme, θ = 0 gives the incomplete- (IIP)
scheme, and θ = 1 gives the symmetric-interior-penalty (SIPG) scheme.

Starting from Problem 3 and with the parameters Ls, Ls,T satisfying (23), the fully discrete
linearized scheme becomes

Problem 5 (Fully discrete linearization scheme)
Let Pnn ∈ V ph (Ω), Pnc ∈ V ph (Ω), and Snw ∈ V sh (Ω). Given Pn,i−1

n ∈ V ph (Ω), Pn,i−1
c ∈ V ph (Ω), and

Sn,i−1
w ∈ V sh (Ω) with Pn+1,0

n = Pnn , Pn+1,0
c = Pnc , and Sn+1,0

w = Snw, find Pn,in ∈ V ph (Ω), Pn,ic ∈
V ph (Ω), and Sn,iw ∈ V sh (Ω), s.t., for all ψs ∈ V sh (Ω), ψn ∈ V ph (Ω), and ψw ∈ V ph (Ω), the following
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holds:

PDE-1: −
∑

Tr∈T

∫

Tr

∂−Sn,iw φψn +
∑

Tr∈T

∫

Tr

λn(Sn,i−1
w )K∇Pn,in ∇ψn

−
∑

Fr∈F

∫

Fr

{λn(Sn,i−1
w )K∇Pn,in · ~n}JψnK

+ θ
∑

Fr∈F

∫

Fr

JPn,in K{λn(Sn,i−1
w )K∇ψn}+ σn

∑

Fr∈F

∫

Fr

f(kp)

|Fr|
JPn,in KJψnK

= θ
∑

Fr∈Γ

∫

Fr

JpDn K{λn(sD)K∇ψn}+ σn
∑

Fr∈Γ

∫

Fr

f(kp)

|Fr|
JpDn KJψnK (27)

PDE-2:
∑

Tr∈T

∫

Tr

∂−Sn,iw φψw +
∑

Tr∈T

∫

Tr

λw(Sn,i−1
w )K∇Pn,iw ∇ψw

−
∑

Fr∈F

∫

Fr

{λw(Sn,i−1
w )K∇Pn,iw · ~n}J wK + θ

∑

Fr∈F

∫

Fr

{λw(Sn,i−1
w )K∇ψw · ~n}JPn,iw K

+ σw
∑

Fr∈F

∫

Fr

f(kp)

|Fr|
JPn,iw KJψwK = θ

∑

Fr∈Γ

∫

Fr

{λw(sD)K∇ψw · ~n}JpDn − pDc K

+ σw
∑

Fr∈Γ

∫

Fr

f(kp)

|Fr|
JpDn − pDc KJψwK (28)

ODE-Pc:
∑

Tr∈T

∫

Tr

Ls(S
n,i
w − Sn,i−1

w )ψs +
∑

Tr∈T

∫

Tr

Ls,T

(
Sn,iw − Sn,i−1

w

∆t

)
s

+
∑

Tr∈T

∫

Tr

Pn,ic ψs −
∑

Tr∈T

∫

Tr

pc,eq(S
n,i−1
w )ψs +

∑

Tr∈T

∫

Tr

T (Sn,i−1
w )− T (Snw)

∆t
ψs = 0

(29)

In line with Remark 1, the solution at the previous time step is chosen as initial guess for the fully
discrete the iteration scheme. However, the convergence result proved in the next section does not
require this starting point.

4. CONVERGENCE ANALYSIS OF THE FULLY DISCRETE LINEARIZATION SCHEME

Here we give the rigorous proof for the convergence of the linear iterative method introduced as
Problem 3, which is then employed for solving the fully discrete (dG/backward Euler) scheme
approximating the solution of Problem 1. We refer to [16] for the convergence of this scheme, where
the existence of solutions for the fully discrete nonlinear system, as well as apriori error estimates
are obtained. In what follows we use the following notations for the errors at the i-th iteration:

eis = Sn,iw − Sn+1
w , eipα = Pn,iα − Pn+1

α , (30)
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where α = n,w, c. To simplify the writing, we also use the following notation for the errors in λn(·)
λw(·), T (·) and pc,eq(·), respectively:

eiλn = λn(Sn,iw )− λn(Sn+1
w ), eiλw = λw(Sn,iw )− λw(Sn+1

w ),

eipc,eq = pc,eq(S
n,i
w )− pc,eq(Sn+1

w ), eiT = T (Sn,iw )− T (Sn+1
w ),

(31)

The following theorem gives the convergence of the iteration. It is proved under a mild restriction
on the time step, which is uniform w.r.t. the spatial mesh.

Theorem 1
Convergence L-scheme
Under assumptions (A1)-(A5) and if ∆t is small enough, the iterative scheme (27)-
(29) converges linearly.

Proof
To prove the convergence of the scheme, we subtract (27), (28) and (29) from (24), (25) and (26)
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respectively to get:

PDE-1:

−
∑

Tr∈T

∫

Tr

(∂−Sn,iw − ∂−Sn+1
w )φψn

+
∑

Tr∈T

∫

Tr

(λn(Sn,i−1
w )K∇Pn,in − λn(Sn+1

w )K∇Pn+1
n )∇ψn

−
∑

Fr∈F

∫

Fr

{(λn(Sn,i−1
w )K∇Pn,in − λn(Sn+1

w )K∇Pn+1
n ) · ~n}JψnK

+ θ
∑

Fr∈F

∫

Fr

JPn,in K{λn(Sn,i−1
w )K∇ψn} − JPn+1

n K{λn(Sn+1
w )K∇ψn}

+ σn
∑

Fr∈F

∫

Fr

f(kp)

|Fr|
JPn,in − Pn+1

n KJψnK = 0 (32)

PDE-2:
∑

Tr∈T

∫

Tr

(∂−Sn,iw − ∂−Sn+1
w )φψw

+
∑

Tr∈T

∫

Tr

(λw(Sn,i−1
w )K∇(Pn,in − Pn,ic )− λw(Sn+1

w )K∇(Pn+1
n − Pn+1

c )∇ψw

−
∑

Fr∈F

∫

Fr

{(λw(Sn,i−1
w )K∇(Pn,in − Pn,ic )− λw(Sn+1

w )K∇(Pn+1
n − Pn+1

c )) · ~n}JψwK

+ θ
∑

Fr∈F

∫

Fr

{λw(Sn,i−1
w )K∇ψw · ~n}JPn,in − Pn,ic K− {λw(Sn+1

w )K∇ψw · ~n}JPn+1
n − Pn+1

c K

+ σw
∑

Fr∈F

∫

Fr

f(kp)

|Fr|
J(Pn,in − Pn,ic )− (Pn+1

n − Pn+1
c )KJψwK = 0 (33)

ODE-Pc:
∑

Tr∈T

∫

Tr

Ls(S
n,i
w − Sn,i−1

w )ψs +
∑

Tr∈T

∫

Tr

Ls,T

(
Sn,iw − Sn,i−1

w

∆t

)
s

+
∑

Tr∈T

∫

Tr

(Pn,ic − Pn+1
c )ψs −

∑

Tr∈T

∫

Tr

(pc,eq(S
n,i−1
w )− pc,eq(Sn+1

w ))ψs

+
∑

Tr∈T

∫

Tr

(∂−T (Sn,i−1
w )− ∂−T (Sn+1

w ))ψs = 0 (34)

We proceed by obtaining error estimates separately for the phase pressures and for the capillary
pressure. These estimates are then used to prove the convergence of the iteration.
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Estimate for the non-wetting phase Taking ψn = eipn in (32) gives

−
∑

Tr∈T

∫

Tr

∂−eisφe
i
pn +

∑

Tr∈T

∫

Tr

λn(Sn,i−1
w )K|∇eipn |2 + σn

∑

Fr∈F

∫

Fr

f(kp)

|Fr|
JeipnK2

=−
∑

Tr∈T

∫

Tr

(λn(Sn,i−1
w )− λn(Sn+1

w ))K∇Pn+1
n ∇eipn

+ (1− θ)
∑

Fr∈F

∫

Fr

JeipnK{λn(Sn,i−1
w )K∇eipn}

−
∑

Fr∈F

∫

Fr

{(λn(Sn,i−1
w )− λn(Sn+1

w ))K∇Pn+1
n ) · ~n}JeipnK

−
∑

Fr∈F

∫

Fr

θ{(λn(Sn,i−1
w )− λn(Sn+1

w ))K∇eipn}JPn+1
n K

=: P1 + P2 + P3 + P4

For P4 one gets

|P4| ≤ ‖Pn+1
n ‖Ω,∞θ

∑

Fr∈F

∫

Fr

|{(λn(Sn,i−1
w )− λn(Sn+1

w ))K∇eipn · ~n}| .

Using (19), Lemma 3, the Cauchy-Schwarz inequality and (21) leads to

|P4| ≤ ‖Pn+1
n ‖Ω,∞θ

∑

Tr∈T

1√
|Fr|

C̃Ct

√
f(k)

|Fr|
∥∥ei−1
λn

∥∥
Tr,0

C̃Ct

√
f(k)

|Fr|
√
|Fr|

∥∥∥K 1
2∇eipn

∥∥∥
Tr,0

≤
√∑

Tr∈T
‖Pn+1

n ‖2Ω,∞θ2C̃4C4
t

f2(k)

|Fr|2
∥∥ei−1
λn

∥∥2

Tr,0

√∑

Tr∈T

∥∥∥K 1
2∇eipn

∥∥∥
2

Tr,0

≤ 1

2ε4
‖Pn+1

n ‖2Ω,∞θ2C̃4C4
t

f2(k)

|Fr|2
∑

Tr∈T

∥∥ei−1
λn

∥∥2

Tr,0
+
ε4
2

∑

Tr∈T

∥∥∥K 1
2∇eipn

∥∥∥
2

Tr,0

for any ε4 > 0.

For P1, P2, and P3, after carrying out steps that are similar to the ones in [16]) one obtains for
any ε1, ε2, ε3 > 0

|P1| ≤
ε1
2

∑

Tr∈T
‖K 1

2∇eipn‖2Tr,0 +
1

2ε1
C‖∇Pn+1

n ‖Ω,∞
∑

Tr∈T
‖ei−1
λn
‖2Tr,0

|P2| ≤
ε2
2

∑

Tr∈T

∥∥∥K 1
2∇en+1

pn

∥∥∥
2

Tr,0
+ (1− θ)2 1

2ε2
λn

2
C2
t C̃

2
∑

Fr

f(kp)

|Fr|
‖Jen+1

pn K‖2Fr,0

|P3| ≤
ε3
2

∑

Fr∈F

f(kp)

|Fr|
‖JeipnK‖2Fr,0 +

1

2ε3
‖K∇Pn+1

n ‖Ω,∞C̃2C2
t

∑

Tr∈T
‖ei−1
λn
‖2Tr,0 .

Observe that the estimate for P3 involves the essential boundedness for the gradient of the pressure
Pn+1
n . Assumptions (A2)-(A5) ensure that the problem remains nondegenerate and therefore the

pressures have essential bounded gradients (see e.g. [5]). These estimates can be extended to the time
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discrete problems, with the time derivative of the saturation being replaced by the finite difference
approximation, noting that these divided differences satisfy the same bounds as ∂ts (see [4]). The
extension to the finite element approximation follows from [25] (also see [22]).

Combining the estimates for |P1| to |P4| and choosing ε3 = σn and ε1 = ε2 = ε4 =
λn
3 gives the

following estimate for the non-wetting phase:

−
∑

Tr∈T

∫

Tr

(∂−eis)φe
i
pn +

λn

2

∑

Tr∈T
‖K 1

2∇eipn‖2Tr,0

+

(
σn
2
− (1− θ)2 3λn

2
C2
t C̃

2

2λn

) ∑

Fr∈F

f(kp)

|Fr|
‖JeipnK‖2Fr,0

≤
(
Cn,1 + Cn,2

θ2

|Fr|2
) ∑

Tr∈T
‖ei−1
λn
‖2Tr,0 , (35)

for some Cn,1, Cn,2 not depending on the discretization parameters.

Estimate for the wetting phase As for the nonwetting phase, taking ψw = eipw into (33) gives

∑

Tr∈T

∫

Tr

(∂−eis)φe
i
pw +

λw

2

∑

Tr∈T
‖K 1

2∇eipw‖2Tr,0

+ (
σw
2
− (1− θ)2 3λw

2
C2
t C̃

2

2λw
)
∑

Fr∈F

f(kp)

|Fr|
‖JeipwK‖2Fr,0

≤
(
Cw,1 + Cw,2

θ2

|Fr|2
) ∑

Tr∈T
‖ei−1
λw
‖2Tr,0 . (36)

for some Cw,1, Cw,2 not depending on the discretization parameters.

Estimate for the capillary pressure With ψs = eis in (34) one obtains

∑

Tr∈T

∫

Tr

Ls(S
n,i
w − Sn,i−1

w )eis +
∑

Tr∈T

∫

Tr

Ls,T

(
Sn,iw − Sn,i−1

w

∆t

)
eis +

∑

Tr∈T

∫

Tr

eipce
i
s

−
∑

Tr∈T

∫

Tr

(pc,eq(S
n,i−1
w )− pc,eq(Sn+1

w ))eis +
∑

Tr∈T

∫

Tr

(∂−T (Sn,i−1
w )− ∂−T (Sn+1

w ))eis = 0

(37)

Recalling the notations in (30)-(31) and observing that

∂−T (Sn,i−1
w )− ∂−T (Sn+1

w ) =
1

∆t
(T (Sn,i−1

w )− T (Sn+1
w )) ,
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using (20) in (37) yields

Ls
2

∑

Tr∈T
‖eis‖2Tr,0 +

Ls,T
2

∆t
∑

Tr∈T
‖∂−eis‖2Tr,0 +

∑

Tr∈T

∫

Tr

eipce
i
s +

Ls
2

∑

Tr∈T
‖eis − ei−1

s ‖2Tr,0

+
Ls,T

2
∆t

∑

Tr∈T
‖∂−eis − ∂−ei−1

s ‖2Tr,0 −
∑

Tr∈T

∫

Tr

ei−1
pc,eqe

i
s +

∑

Tr∈T

∫

Tr

1

∆t
ei−1
T eis

=
Ls
2

∑

Tr∈T
‖ei−1
s ‖2Tr,0 +

Ls,T
2

∆t
∑

Tr∈T
‖∂−ei−1

s ‖2Tr,0 . (38)

Since pc,eq(·) is monotone one has

−(pc,eq(x)− pc,eq(y))(x− y) = |pc,eq(x)− pc,eq(y)| · |x− y| ,

and similarly for T (·). In this way, (38) becomes

Ls
2

∑

Tr∈T
‖eis‖2Tr,0 +

Ls,T
2

∆t
∑

Tr∈T
‖∂−eis‖2Tr,0 +

∑

Tr∈T

∫

Tr

eipce
i
s +

Ls
2

∑

Tr∈T
‖eis − ei−1

s ‖2Tr,0

+
Ls,T

2
∆t

∑

Tr∈T
‖∂−eis − ∂−ei−1

s ‖2Tr,0 +
∑

Tr∈T

∫

Tr

|ei−1
pc,eq | · |ei−1

s |+
∑

Tr∈T

∫

Tr

| 1

∆t
ei−1
T | · |ei−1

s |

=
Ls
2

∑

Tr∈T
‖ei−1
s ‖2Tr,0 +

Ls,T
2

∆t
∑

Tr∈T
‖∂−ei−1

s ‖2Tr,0

+
∑

Tr∈T

∫

Tr

ei−1
pc,eq (e

i
s − ei−1

s ) +
∑

Tr∈T

∫

Tr

1

∆t
ei−1
T (ei−1

s − eis) .

Using the Lipschitz continuity of pc,eq(·) and T (·), the Young’s inequality gives

Ls
2

∑

Tr∈T
‖eis‖2Tr,0 +

Ls,T
2

∆t
∑

Tr∈T
‖∂−eis‖2Tr,0 +

∑

Tr∈T

∫

Tr

eipce
i
s +

Ls
2

∑

Tr∈T
‖eis − ei−1

s ‖2Tr,0

+
Ls,T

2
∆t

∑

Tr∈T
‖∂−eis − ∂−ei−1

s ‖2Tr,0 +
1

LPc

∑

Tr∈T
‖ei−1
pc,eq‖2Tr,0 +

1

LT∆t

∑

Tr∈T
‖ei−1
T ‖2Tr,0

≤ Ls
2

∑

Tr∈T
‖ei−1
s ‖2Tr,0 +

Ls,T
2

∆t
∑

Tr∈T
‖∂−ei−1

s ‖2Tr,0 +
1

2Ls

∑

Tr∈T
‖ei−1
pc,eq‖2Tr,0

+
Ls
2

∑

Tr∈T
‖eis − ei−1

s ‖2Tr,0 +
1

2Ls,T∆t

∑

Tr∈T
‖ei−1
T ‖2Tr,0 +

Ls,T∆t

2

∑

Tr∈T
‖ 1

∆t
(ei−1
s − eis)‖2Tr,0 .

Using by (23) we get the following estimate for the capillary pressure

Ls
2

∑

Tr∈T
‖eis‖2Tr,0 +

Ls,T
2

∆t
∑

Tr∈T
‖∂−eis‖2Tr,0 +

∑

Tr∈T

∫

Tr

eipce
i
s

+
1

2Ls

∑

Tr∈T
‖ei−1
pc,eq‖2Tr,0 +

1

2Ls,T∆t

∑

Tr∈T
‖ei−1
T ‖2Tr,0

≤ Ls
2

∑

Tr∈T
‖ei−1
s ‖2Tr,0 +

Ls,T
2

∆t
∑

Tr∈T
‖∂−ei−1

s ‖2Tr,0 . (39)
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Combined estimate Multiplying (39) by
φ

∆t
and adding the resulting to the sum of (35) and (36)

and observing that

∑

Tr∈T

∫

Tr

φ

∆t
eipce

i
s +

∑

Tr∈T

∫

Tr

∂−eis(φe
i
pw − φeipn) =

∑

Tr∈T

∫

Tr

φ

∆t
eipce

i
s −

∑

Tr∈T

∫

Tr

∂−eise
i
pc = 0

leads to

Ls
2

φ

∆t

∑

Tr∈T
‖eis‖2Tr,0 +

Ls,Tφ

2

∑

Tr∈T
‖∂−eis‖2Tr,0

+
φ

2Ls∆t

∑

Tr∈T
‖ei−1
pc,eq‖2Tr,0 +

φ

2Ls,T∆t2

∑

Tr∈T
‖ei−1
T ‖2Tr,0

+
λn

2

∑

Tr∈T
‖K 1

2∇eipn‖2Tr,0 + (
σn
2
− (1− θ)2 3λn

2
C2
t C̃

2

2λn
)
∑

Fr∈F

f(kp)

|Fr|
‖JeipnK‖2Fr,0

+
λw

2

∑

Tr∈T
‖K 1

2∇eipw‖2Tr,0 + (
σw
2
− (1− θ)2 3λw

2
C2
t C̃

2

2λw
)
∑

Fr∈F

f(kp)

|Fr|
‖JeipwK‖2Fr,0

≤
(
Cn,0 + Cn,1 +

Cn,2θ
2

|Fr|2
) ∑

Tr∈T
‖ei−1
λn
‖2Tr,0 +

(
Cw,0 + Cw,1 +

Cw,2θ
2

|Fr|2
) ∑

Tr∈T
‖ei−1
λw
‖2Tr,0

+
Lsφ

2∆t

∑

Tr∈T
‖ei−1
s ‖2Tr,0 +

Ls,Tφ

2

∑

Tr∈T
‖∂−ei−1

s ‖2Tr,0 .

After multiplying with ∆t and rearranging the terms this becomes

Lsφ

2

∑

Tr∈T
‖eis‖2Tr,0 +

∆tLs,Tφ

2

∑

Tr∈T
‖∂−eis‖2Tr,0

+
φ

2Ls

∑

Tr∈T
‖ei−1
pc,eq‖2Tr,0 +

φ

2Ls,T∆t

∑

Tr∈T
‖ei−1
T ‖2Tr,0

+
∆tλn

2

∑

Tr∈T
‖K 1

2∇eipn‖2Tr,0 + ∆t(
σn
2
− (1− θ)2 3λn

2
C2
t C̃

2

2λn
)
∑

Fr∈F

f(kp)

|Fr|
‖JeipnK‖2Fr,0

+
∆tλw

2

∑

Tr∈T
‖K 1

2∇eipw‖2Tr,0 + ∆t(
σw
2
− (1− θ)2 3λw

2
C2
t C̃

2

2λw
)
∑

Fr∈F

f(kp)

|Fr|
‖JeipwK‖2Fr,0

≤ ∆t

(
Cn,0 + Cn,1 +

Cn,2θ
2

|Fr|2
) ∑

Tr∈T
‖ei−1
λn
‖2Tr,0 + ∆t

(
Cw,0 + Cw,1 +

Cw,2θ
2

|Fr|2
) ∑

Tr∈T
‖ei−1
λw
‖2Tr,0

+
Lsφ

2

∑

Tr∈T
‖ei−1
s ‖2Tr,0 +

∆tLs,Tφ

2

∑

Tr∈T
‖∂−ei−1

s ‖2Tr,0 .
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Using the Lipschitz continuity of λn, λw, T−1, and p−1
c,eq, this rewrites

Lsφ

2

∑

Tr∈T
‖eis‖2Tr,0 +

∆tLs,Tφ

2

∑

Tr∈T
‖∂−eis‖2Tr,0

+
l2pc,eqφ

2Ls

∑

Tr∈T
‖ei−1
s ‖2Tr,0 +

l2T∆tφ

2Ls,T

∑

Tr∈T
‖∂−ei−1

s ‖2Tr,0

+
∆tλn

2

∑

Tr∈T
‖K 1

2∇eipn‖2Tr,0 + ∆t(
σn
2
− (1− θ)2 3λn

2
C2
t C̃

2

2λn
)
∑

Fr∈F

f(kp)

|Fr|
‖JeipnK‖2Fr,0

+
∆tλw

2

∑

Tr∈T
‖K 1

2∇eipw‖2Tr,0 + ∆t(
σw
2
− (1− θ)2 3λw

2
C2
t C̃

2

2λw
)
∑

Fr∈F

f(kp)

|Fr|
‖JeipwK‖2Fr,0

≤ Lsφ

2

∑

Tr∈T
‖ei−1
s ‖2Tr,0 +

∆tLs,Tφ

2

∑

Tr∈T
‖∂−ei−1

s ‖2Tr,0

+ ∆t
(
L2
λnCn + L2

λwCw
)(

2 +
θ2

|Fr|2
) ∑

Tr∈T
‖ei−1
s ‖2Tr,0 .

From this one obtains

Lsφ

2

∑

Tr∈T
‖eis‖2Tr,0 +

∆tLs,Tφ

2

∑

Tr∈T
‖∂−eis‖2Tr,0

+

[
l2pc,eqφ

2Ls
−∆tC

(
2 +

θ2

|Fr|2
)] ∑

Tr∈T
‖ei−1
s ‖2Tr,0 +

l2T∆tφ

2Ls,T

∑

Tr∈T
‖∂−ei−1

s ‖2Tr,0

+
∆tλn

2

∑

Tr∈T
‖K 1

2∇eipn‖2Tr,0 + ∆t(
σn
2
− (1− θ)2 3λn

2
C2
t C̃

2

2λn
)
∑

Fr∈F

f(kp)

|Fr|
‖JeipnK‖2Fr,0

+
∆tλw

2

∑

Tr∈T
‖K 1

2∇eipw‖2Tr,0 + ∆t(
σw
2
− (1− θ)2 3λw

2
C2
t C̃

2

2λw
)
∑

Fr∈F

f(kp)

|Fr|
‖JeipwK‖2Fr,0

≤Lsφ
2

∑

Tr∈T
‖ei−1
s ‖2Tr,0 +

∆tLs,Tφ

2

∑

Tr∈T
‖∂−ei−1

s ‖2Tr,0,

which can be reformulated as

Lsφ

2

∑

Tr∈T
‖eis‖2Tr,0 +

∆tLs,Tφ

2

∑

Tr∈T
‖∂−eis‖2Tr,0

+
∆tλn

2

∑

Tr∈T
‖K 1

2∇eipn‖2Tr,0 + ∆t(
σn
2
− (1− θ)2 3λn

2
C2
t C̃

2

2λn
)
∑

Fr∈F

f(kp)

|Fr|
‖JeipnK‖2Fr,0

+
∆tλw

2

∑

Tr∈T
‖K 1

2∇eipw‖2Tr,0 + ∆t(
σw
2
− (1− θ)2 3λw

2
C2
t C̃

2

2λw
)
∑

Fr∈F

f(kp)

|Fr|
‖JeipwK‖2Fr,0

≤
[
Lsφ

2
−
(
l2pc,eqφ

2Ls
−∆tC

(
2 +

θ2

|Fr|2
))] ∑

Tr∈T
‖ei−1
s ‖2Tr,0

+

(
∆tLs,Tφ

2
− l2T∆tφ

2Ls,T

) ∑

Tr∈T
‖∂−ei−1

s ‖2Tr,0.
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For ∆t small enough, this leads to a contraction for the terms
∑

Tr∈T ‖e
i
s‖2Tr,0 and∑

Tr∈T ‖∂
−eis‖2Tr,0, which concludes the proof.

Remark 2
To obtain the contraction it is requires that the time-step is chosen s.t.

∆t <
l2pc,eq φ

2LsC

(
2 +

θ2

|Fmin|2
) ,

where |Fmin| is the measure of the smallest face. This restriction is milder when compared to the
typical stability conditions imposed for explicit methods (like IMPES), or for the Newton method
(see e.g. [32] for the analysis for a simplified two-phase model). Moreover, for the IIPG (incomplete
interior penalty Galerkin) method, in which θ = 0, the constraint on the time-step does not depend
on the mesh size at all and is similar to the one for the L-method for standard, equilibrium two-phase
flows when τ = 0, see [30].

Remark 3
To guarantee the convergence, the parameters Ls and Ls,T must satisfy (23). For degenerate
problems, if e.g. the equilibrium capillary pressure function is not Lipschitz one needs to regularize
first the problem in order to ensure the convergence of the scheme.

Remark 4
The convergence result can be extended to conforming discretizations like finite elements, when
the approximation lies in W 1,2(Ω). On can carry out the similar steps as above, but now jumps and
averages over faces do not appear anymore. As in the IIPG, in this case the restriction on the time
step does not depend on the mesh size, leading to results that are similar to the ones in [30].

5. NUMERICAL EXPERIMENTS

Having proved rigorously the convergence of the iteration scheme, we now test numerically
its effectiveness. To do so, two test problems are considered. In both cases a Brooks-Corey
parametrization is assumed (see e.g. [15, 26]). For the first problem an analytical solution can
be obtained and is used for estimating the errors explicitly. The second uses realistic parameters
and nonlinearities and is defined in a heterogeneous porous medium. The focus here is on the
convergence of the proposed linearization scheme, and comparison with Newton’s method. As
mentioned again, the convergence of the dG/backward Euler discretization is proved in [16]. For
the implementation of the numerical scheme, we used DUNE-PDELab [1, 2].

5.1. Example 1: A problem with known analytical solution

We consider the domain Ω = (0, 1)× (0, 1) ⊂ R2 and the time interval [0, 1]. The other
parameters are listed in Table I.
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Table I. Example 1 - Properties

Phase Properties
water dynamic viscosity µw

[
kg
ms

]
1

oil dynamic viscosity µn
[
kg
ms

]
1

water density ρw
[
kg
m3

]
1

oil density ρn
[
kg
m3

]
1

Hydraulic Properties
absolute permeability K

[
m2
]

1
residual water saturation Srw 0
residual oil saturation Srn 0
porosity ϕ 0.4
damping coefficient τ [Pa · s] 1
Brooks-Correy Parameters
entry pressure pd [Pa] 1
pore size distribution index λ 2

(a) sw at t = 5 for the mesh size
h = 0.4

(b) sw at t = 5 for the mesh size
h = 0.2

(c) sw at t = 5 for the mesh size
h = 0.1

Figure 1. Problem 1 - Comparison of the Newton-scheme and the L-scheme for various meshes.

The right hand sides (sources) in the equations and the boundary and initial conditions are chosen
such that the following are the exact solution of the model

pn(t, x, y) =
1

4
cos((x+ y)π − t) +

1

2
,

Sw(t, x, y) =
1

4
sin((x+ y)π − t) +

1

2
,

pc(t, x, y) = pc,eq(Sw(t, x, y))− ∂tT (Sw(t, x, y)).

We chose θ = 0 and the penalty parameters as σw = σn = 10. We set

T (Sw(t, x, y)) := τSw(t, x, y) ,

which corresponds to a constant damping factor τ . The initial mesh, consisting of five elements in
each direction, is refined successively by doubling the number of elements after each simulation. We
first solve the nonlinear system by using the Newton-scheme to get a reference simulation. Then we
solve the same problem using the L-scheme chosing Ls = 0.1 5. In both cases we use a time-step
size of ∆t = 0.1.
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Table III. Example 2 - Boundary and initial conditions

case A case B
Boundary values
x = 0m

Water saturation Sw

{
0.6 if 0.2 < y < 0.4

0.2 else

{
0.6 if 0.4 < y < 0.6

0.2 else
Non-wetting fluid pressure pn [Pa] 1.5 · 105 1.5 · 105

x = 1m
Water saturation Sw 0.2 0.2
Non-wetting fluid pressure pn [Pa] 1.0 · 105 1.0 · 105

y = 0m and y = 1m

Flow rate of water qw
[
kg
m2s

]
0.0 0.0

Flow rate of PCE qn
[
kg
m2s

]
0.0 0.0

Initial values
Water saturation Sw 0.2 0.2

For the L-scheme we take Ls = 0.1. Since the dynamic term is linear, no additional linearization
is needed. The time-step is chosen as dt = 10s, and the domain is discretized by taking 50× 50 =

2500 elements. We again chose θ = 0 and σw = σn = 10. As displayed in Figure 3a, in case A a
straight finger is being formed, propagating with the flow (from left to right). For case B, the choice
in the absolute permeability K leads to a preferential flow through the highly permeable medium,
and a flow path is formed from the lower left to the upper right quadrant. This can be seen in Figure
3b.

For both cases the L-scheme performs well and leads to results as expected.

6. SUMMARY

We considered a non-standard model for two-phase flow in porous media. The fluids are assumed to
be incompressible and immiscible and the porous matrix is non-deformable. The model includes a
dynamic term in the phase pressure difference - saturation relationship. We propose a discretization
scheme based on the discontinuous Galerkin method in space and on backward Euler in time. A
robust linear scheme is proposed to solve the nonlinear problems appearing at each time step. This
scheme does not require computing any derivatives. It converges linearly, however, for any starting
point. The convergence of the scheme is proved rigorously. Finally, numerical results are presented,
confirming the theoretical findings.
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(a) Sw at t = 1500s for case A. (b) Sw at t = 2500s for case B.

Figure 3. Example 2 - Saturation profiles at time t = 2500s for a homogeneus medium (left) and a
heterogeneous one (right).
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O. Sander. DUNE Web page, 2011. http://www.dune-project.org.

2. P. Bastian, F. Heimann, and S. Marnach. Generic implementation of finite element methods in the distributed and
unified numerics environment (dune). Kybernetika, 46(2):294–315, 2010.

3. L. Bergamaschi and M. Putti. Mixed finite elements and newton-type linearizations for the solution of richards’
equation. Int. J. Num. Meth. Engng., 45(1):1025–1046, 1999.

4. X. Cao and I. S. Pop. Degenerate two-phase porous media flow model with dynamic capillarity. J. Differential
Equations, 260(3):2418–2456, 2016.

5. X. Cao and I.S. Pop. Two-phase porous media flows with dynamic capillary effects and hysteresis : uniqueness of
weak solutions. Computers and Mathematics with Applications, 69(2015)(7):688–695, 2015.

6. M. Celia, E. Bouloutas, and R. R. Zarba. A general mass-conservative numerical solution for the unsaturated flow
equation. Water Resour. Res., 26:1483–1496, 1990.

7. D.A. Di Pietro and A. Ern. Discrete functional analysis tools for discontinuous galerkin methods with application
to the incompressible navier-stokes equations. Mathematics of Computation, 79(271):13031330, 2010.

8. D.A. Di Pietro and A. Ern. Mathematical Aspects of Discontinuous Galerkin Methods. Springer, 2012.
9. D.A. DiCarlo. Experimental measurements of saturation overshoot on infiltration. Water Resources Research,

40(4), 2004. W04215.
10. H.-J.G. Diersch, V. Clausnitzer, V. Myrnyy, R. Rosati, M. Schmidt, H. Beruda, B.J. Ehrnsperger, and R. Virgilio.

Modeling unsaturated flow in absorbent swelling porous media: Part 1. theory. Transport in Porous Media,
83(3):437–464, 2010.

11. Y. Epshteyn and B. Riviere. Analysis of discontinuous galerkin methods for incompressible two-phase flow.
Journal of Computational and Applied Mathematics, 225(2):487 – 509, 2009.

12. S.M. Hassanizadeh and A.Yu. Beliaev. A theoretical model of hysteresis and dynamic effects in the capillary
relation for two-phase flow in porous media. Transport in Porous Media, 43(3):487–510, 2001.

13. S.M. Hassanizadeh, M. Celia, and H.K. Dahle. Dynamic efect in the capillary pressure-saturation relationship and
its impacts on unsaturated flow. Vadose Zone Journal, 1(1):38–57, 2002.

14. S.M. Hassanizadeh and W.G. Gray. Thermodynamic basis of capillary pressure in porous media. Water Resources
Research, 29(10):3389–3405, 1993.



24 KARPINSKI, POP, RADU

15. R. Helmig. Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of
Hydrosystems. Environmental engineering. Springer, 1997.

16. S. Karpinski and I.S. Pop. Analysis of an interior penalty discontinuous galerkin scheme for two phase flow in
porous media with dynamic capillarity effects. Numer. Math., 2016.

17. J. Koch, A. Rätz, and B. Schweizer. Two-phase flow equations with a dynamic capillary pressure. European
Journal of Applied Mathematics, 24:49–75, 2 2013.

18. J. Kou and S. Sun. A new treatment of capillarity to improve the stability of impes two-phase ow formulation.
Computers and Fluids, 39:1923–1931, 2010.

19. J. Kou and S. Sun. On iterative impes formulation for two phase ow with capillarity in heterogeneous porous media.
Inter. J. of Numer. Anal. and Modeling Series B, pages 20–40, 2010.

20. S. Kraeutle. The semismooth newton method for multicomponent reactive transport with minerals. Adv. Water
Resources, 34(5):137–151, 2011.

21. F. Lehmann and Ph. Ackerer. Comparison of iterative methods for improved solutions of the fluid flow equation in
partially saturated porous media. Transport in porous media, 31:275–292, 1998.

22. Buyang Li. Maximum-norm stability and maximal Lp regularity of FEMs for parabolic equations with Lipschitz
continuous coefficients. Numer. Math., 131(3):489–516, 2015.

23. F. List and F. A. Radu. A study on iterative methods for solving Richards‘ equation. Comput. Geosci., 20:341–353,
2016.

24. R. Neumann, P. Bastian, and O. Ippisch. Modeling and simulation of two-phase two-component flow with
disappearing nonwetting phase. Computational Geosciences, 17:139–149, 2013.

25. J. A. Nitsche and Mary F. Wheeler. L∞-boundedness of the finite element Galerkin operator for parabolic
problems. Numer. Funct. Anal. Optim., 4(4):325–353, 1981/82.

26. J.M. Nordbotten and M.A. Celia. Geological Storage of CO2: Modeling Approaches for Large-Scale Simulation.
Wiley, 2011.

27. E.J. Park. Mixed finite elements for nonlinear second-order elliptic problems. SIAM J. Numer. Anal., 32:865885,
1995.

28. I.S. Pop, F.A. Radu, and P. Knabner. Mixed finite elements for the richards’ equations: linearization procedure. J.
Comput. Appl. Math., 168(1-2):365–373, 2004.

29. F.A. Radu, J.M. Nordbotten, I.S. Pop, and K. Kumar. A convergent mass conservative numerical scheme based on
mixed finite elements for two-phase flow in porous media. arXiv, 1512.08387:1 – 32, 2015.

30. F.A. Radu, J.M. Nordbotten, I.S. Pop, and K. Kumar. A robust linearization scheme for finite volume based
discretizations for simulation of two-phase flow in porous media. Journal of Computational and Applied
Mathematics, 289(0):134 – 141, 2015.

31. F.A. Radu and I.S. Pop. Mixed finite element discretization and newton iteration for a reactive contaminant transport
model with nonequilibrium sorption: convergence analysis and error estimates. Comput. Geosci., 15(3):431–450,
2011.

32. F.A. Radu, I.S. Pop, and P. Knabner. On the convergence of the newton method for the mixed finite element
discretization of a class of degenerate parabolic equation. In Numerical Mathematics and Advanced Applications.
A. Bermudez de Castro et al. (editors), Springer., pages 1194–1200, 2006.

33. B. Riviere, M.F. Wheeler, and V. Girault. A priori error estimates for finite element methods based on discontinuous
approximation spaces for elliptic problems. SIAM J. Numer. Anal., 39(3):902–931, March 2001.
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