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Abstract

The isentropic Euler equations at low Mach number are inherently stiff equations. To deal with them numerically, one
can hardly use explicit-in-time standard methods known from the ’compressible’ world as the CFL condition dictates
prohibitively small time steps. A technique that has become popular in recent years is the use of a convective flux
splitting upon which stiff and non-stiff parts are identified that are then treated implicitly and explicitly, respectively.
This leads to the well-known IMEX schemes. In this paper, we investigate multiple splittings to accurately and effi-
ciently compute the low-Mach number case of the compressible isentropic Euler equations. Temporal discretization
is done with IMEX Runge-Kutta methods, while for the spatial part, we rely on the discontinuous Galerkin spectral
element method. For a general class of splittings, it is shown that the fully discrete method respects the low-Mach
asymptotics. Subsequently, splittings are investigated and compared numerically for several test cases.

Keywords: discontinuous Galerkin spectral element, low Mach, IMEX Runge-Kutta, flux splitting, asymptotic
consistency

1. Introduction

The non-dimensionalized Euler equations at a low Mach number ε constitute a singularly perturbed system of
equations [20, 33, 26], and are given by

ρt + ∇ · (ρu) = 0,

(ρu)t + ∇ · (ρu ⊗ u) +
1
ε2∇p = 0,

(1)

with the equation of state p(ρ) := κργ and κ > 0, γ ≥ 1. ρ, u and p denote density, velocity and pressure. If one
considers so-called well-prepared initial data, which amount to claiming that

ρ(t = 0) = const + O(ε2), and ∇ · (ρu)(t = 0) = O(ε), (2)

one can show that there is a well-behaved limit as ε → 0 [20]. However, for small but finite ε, wave speeds differ
tremendously as the speed of sound tends to infinity. This has serious influences on the CFL condition and demands
for explicit-in-time schemes an impractically small time step ∆t. Many attempts have been made to overcome this
issue, see the by far not exhaustive list [6, 7, 9, 10, 11, 14, 21, 22, 27, 32] and the references therein. In particular,
the concept of using flux splittings, see, e.g., [7, 8, 12, 18, 21, 27, 30], to treat stiff parts implicitly and non-stiff
parts explicitly, resulting in so-called IMEX schemes [1, 2, 4, 19], has been intensely studied. In previous work
[17, 18, 29, 34], we developed a flux splitting based on the solution (ρ(0),u(0)) of the incompressible Euler equations.
This solution can be seen as the formal limit of a solution to Equation (1) and is given by

ρ(0) ≡ const > 0, ∇ · u(0) = 0,

(u(0))t + ∇ · (u(0) ⊗ u(0)) +
∇p(2)

ρ(0)
= 0,

(3)

with p(2) denoting the hydrodynamic pressure. The developed flux splitting, termed RS-IMEX (RS stands for reference
solution), shows many favorable properties with respect to stability and accuracy of an overall method [17, 18, 29].
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However, the computation of a solution to (3) is usually not a trivial endeavour. In this work we consider different
variants of the RS-IMEX splitting and established splittings from literature [8, 12]. We generalize all the used split-
tings – the RS-IMEX as well as the ones due to Degond/Tang (DeTa) [8] and Haack/Jin/Liu (HJL) [12] – to cast them
into a general framework. For this framework, we can show the very important asymptotic consistency property that
guarantees the correctness of an algorithm also in the ε→ 0 limit. We compare those splittings in the framework of a
discontinuous Galerkin spectral element discretization [13, 24] of Equation (1).

The paper is structured as follows: In Section 2, we introduce the employed discretization method. Furthermore,
we review, generalize and extend splittings known from literature. In Section 3 it is shown that the fully discrete
method is asymptotically consistent. Section 4 then shows numerical results for a variety of splittings including the
comparison of performance. Section 5 offers conclusion and outlook.

2. IMEX discontinuous Galerkin method

In the following, we shortly review the discontinuous Galerkin spectral element method combined with an IMEX
Runge-Kutta method. Furthermore, we detail the splittings used in this work. We assume that the differential equations
are given on domain Ω × [0,T ], Ω ⊂ Rdim with dim the spatial dimension (in this work, dim ∈ {2, 3}), and T ∈ R+ is
the final time. Boundary conditions are chosen to be periodic.

2.1. Numerical method

In conservative form, the isentropic Euler equations Equation (1) can be written as

0 = ∂tw + ∇ · f (w).

Given a suitable identification of ’stiff’ and ’non-stiff’ parts, the flux can be split into a part f̃ that is treated implicitly
and a part f̂ that is treated explicitly, i.e.,

0 = ∂tw + ∇ · f (w) = ∂tw + ∇ ·
(

f̃ (w) + f̂ (w)
)
.

While f does not explicitly depend on time and space, we allow f̃ and f̂ to do so, but supress the explicit notation
for the ease of presentation. Temporal discretization is performed using IMEX Runge-Kutta methods [1, 25], which
are combinations of implicit and explicit Runge-Kutta schemes. Spatial discretization is done by applying the dis-
continuous Galerkin spectral element discretization [24] to the split equation as done in [34]. This discretization is
based on the tensor-product of one-dimensional Lagrange polynomials and requires a proper choice of the numerical
flux function for the treatment of discontinuities at the cell boundaries. A detailed description of the present spatial
discretization method can be found in [13]. We assume that the temporal domain is separated into N intervals of size
∆t, i.e.,

[0,T ] =

N⋃
n=1

[tn−1, tn] with 0 = t0 < . . . < tn < . . . < tN = T,

and the spatial domain is separated into ne cells, i.e.,

Ω =

ne⋃
k=1

Ωk with Ωk ∩Ωi = ∅ ∀k , i.

The set of all cells Ωk is denoted by T , the corresponding skeleton – the set of all cell boundaries – by ∂T . Then,
Pq(Ωk) denotes the polynomial space with polynomials of maximum degree q ≥ 0 on every cell Ωk. Based on this,
the broken polynomial space on the complete spatial domain is defined in the standard way by

Vq := {v ∈ L2(Ω) : v|Ωk
∈ Pq(Ωk) ∀ k = 1, . . . , ne},
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and for systems by

Vdim +1
q :=

dim +1×
i=1

Vq.

Obviously, a function σ ∈ Vq is not necessarily continuous over a cell boundary, therefore we define for a cell
boundary value x ∈ ∂Ωk the interior (−) and exterior (+) value by

σ∓(x) := lim
0<δ→0

σ(x ∓ δnk),

where nk is the outward pointing normal vector for cell Ωk. If we consider σ ∈ Vq on an edge e independent of
neighboring cells, then we assume that a general direction ne is given and consequently

σ∓(x) := lim
0<δ→0

σ(x ∓ δne).

Before we can define the final method, we introduce an additional notation for the ease of presentation. For the
integrals over a whole domain, i.e., over all elements of T , we define the somewhat non-standard notation

(a, b)T :=
ne∑

k=1

∫
Ωk

a · b dx

and for integrals over all cell boundaries, i.e., over all elements of ∂T , we define

{a, b}∂T :=
ne∑

k=1

∫
∂Ωk

(
a+ + a−

)
b · nk ds and ~a, b�∂T :=

ne∑
k=1

∫
∂Ωk

(
a− − a+) b ds.

With this, we can define the IMEX Runge-Kutta discontinuous Galerkin method we use in the following. Please note
that we only give the definition of this method and refer to [17, 34] for more details. Furthermore, we only treat
globally stiffly accurate IMEX Runge-Kutta methods here, these are methods where the last stage is identical to the
update step [5].

Definition 1 (IMEX discontinuous Galerkin method). Let a globally stiffly accurate IMEX Runge-Kutta method be
given by its Butcher tableau, terms with an overhat referring to the explicit part. Initial values for the equation are
termed w0. For every n = 0, . . . ,N − 1 do the following:

1. For i = 1, . . . , s: Seek wn,i ∈ Vdim +1
q such that

0 =
(
wn,i − wn, ϕ

)
T

+ ∆tn
i∑

j=1

Ãi, j

(
−

(
f̃ (wn, j),∇ϕ

)
T +

1
2

{
f̃ (wn, j), ϕ

}
∂T +

1
2

Diag
{

1
ε2 , 1, . . . , 1

} �
wn, j, ϕ

�
∂T

)

+ ∆tn
i−1∑
j=1

Âi, j

(
−

(
f̂ (wn, j),∇ϕ

)
T +

1
2

{̂
f (wn, j), ϕ

}
∂T + ε

�
wn, j, ϕ

�
∂T

) (4)

holds for all ϕ ∈ Vq. The internal time instances are given by

t̃n, j := tn + c̃ j∆tn, and t̂n, j := tn + ĉ j∆tn.

2. Set wn+1 := wn,s.

The used IMEX Runge-Kutta methods are summarized in Appendix A.
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2.2. Splitting techniques
It is the intention of this paper to both extend the recently introduced RS-IMEX splitting and to compare these

extensions against well-known splittings from literature. To this end, we start by defining an abstract splitting which
unifies all splittings used in this work. In the sequel, we assume that 0 < ε < 1. Note that the upper limit is arbitrary
and can be changed by a simple rescaling of the equations.

Definition 2 (Generalized splitting). Let the smooth functionsM, H and K be given and assume that each of them
can be represented by an asymptotic expansion in form

M =M(0) + εM(1) + ε2M(2) + O(ε3),

H(ρ) = H(0)(ρ(0)) + εH(1)(ρ(0), ρ(1)) + ε2H(2)(ρ(0), ρ(1), ρ(2)) + O(ε3),
K(ρ,u) = K(0)(ρ(0),u(0)) + O(ε).

Let furthermore be 0 ≤ M(ε) < 1 for ε < 1. The functionsH(0) andH(1) are supposed to fulfill

∇H(0)(ρ(0)) = H ′(0)(ρ(0))∇ρ(0),

withH ′(0)(ρ(0)) > 0 if ρ(0) being strictly positive and

∇H(1)(ρ(0), ρ(1)) = H∗(1)(ρ(0))∇ρ(1),

if ρ(0) ≡ const withH∗(1)(ρ(0)) > 0. Building upon this, a unifiying generalized splitting is defined by

f̃ :=
(

(1 −M)ρu
K(ρ,u) +

H(ρ)
ε2 Id

)
and f̂ :=

( Mρu
ρu ⊗ u − K(ρ,u) +

p(ρ)−H(ρ)
ε2 Id

)
. (5)

Remark 1. The following remark on the splittings can be made:

• Obviously, this splitting is always consistent in the sense that f̃ + f̂ = f .

• M, K and H should be chosen in such a way that both explicit and implicit parts are hyperbolic. There will
always be a value ε0 > 0 such that for all ε < ε0 the implicit flux f̃ induces a strictly hyperbolic system. The
examples mentioned in this work will induce hyperbolic systems for both f̂ and f̃ for all values of 0 < ε < 1.

We can cast the splittings used in this work into the above-mentioned framework:

1. Splitting by Degond/Tang [8]: Take

M = 0, K = 0 and H =
(
1 − ε2

)
p(ρ)

in the generalized splitting.
2. Splitting by Haack/Jin/Liu [12]: Take

M = ε2, K = 0 and H = a(t)ρ

in (5) to obtain this splitting, where a(t) := minx p′(ρ(x, t)). In the algorithm, the coefficient a(t) is evaluated
explicitly, i.e., for the implicit flux we use a(t) evaluated at the previous stage.

3. RS-IMEX splitting [18]: For a given, so-called reference solution wref, the RS-IMEX splitting is defined by
setting

M = 0, K = −ρuref ⊗ uref + ρu ⊗ uref + uref ⊗ ρu and H = p(ρref) + p′(ρref)(ρref − ρ).

The idea behind this splitting is a linearization of the convective fluxes around the reference solution wref and
taking the remainder as explicit flux contribution. For details, we refer to [29, 18]. In previous works, we have
always used the reference solution to be the solution to the incompressible equations, Equation (3), computed
with the same order of accuracy as done for the compressible equation. In this work, we also present other
choices, namely the following ones:
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• RS-IMEX-qCqI : This is the most obvious simplification, namely the computation of the compressible
solution with polynomial order qC , while the incompressible solution is computed with polynomial order
qI ≤ qC .

• RS-IMEX-min: The reference solution is defined by

wref := min
x

w(x, t).

This leads, of course, to a tremendous simplification, because the reference solution no longer requires the
solution of the incompressible Euler equations. The minimum is evaluated explicitly.

• RS-IMEX-mean: In the same spirit, the following variant only uses ρ(0) (which can be extracted from the
initial conditions without extra algorithmic work) and the mean value of u:

ρref := ρ(0) and uref =
1
|Ω|

∫
Ω

udx.

This is also a tremendous simplification in comparison to the original RS-IMEX. The mean is evaluated
explicitly.

Those three variants all have in common that the reference solution can by definition be written in an asymptotic
expansion, i.e.,

ρref = (ρref)(0) + ε2(ρref)(2) + O(ε3) and uref = (uref)(0) + O(ε).

With this, it is easy to see thatM and K fulfill all the necessary conditions. ForH we obtain

H = p((ρref)(0)) + p′((ρref)(0))(ρ(0) − (ρref)(0))︸                                              ︷︷                                              ︸
=H(0)

+ε
(
p′((ρref)(0))(ρ(1))

)︸                ︷︷                ︸
=H(1)

+ ε2 (
p′((ρref)(0))(ρ(2)) + p′((ρref)(0))((ρref)(2)) + p′′((ρref)(0))(ρref)(2)ρ(0)

)︸                                                                                  ︷︷                                                                                  ︸
=H(2)

+O(ε3).

The quantity ρ(0) occurs linearly in H(0), and so does the quantity ρ(1) in H(1). The coefficients are strictly
positive if only the reference solution is strictly positive which is the case in this setting. Therefore, also the
conditions imposed onH(0) andH(1) are fulfilled.

3. Asymptotic consistency

In this chapter, we show the asymptotic preserving property [15, 16] that gives an indication whether a numerical
method is able to handle compressible flows at low Mach numbers. More precisely, it is shown that the ε→ 0 limit of
the discretization is a consistent discretization of the incompressible Euler equations. In the sequel, we always work
with an asymptotic expansion of the numerical solution, i.e.,

wn,i = wn,i
(0) + εwn,i

(1) + ε2wn,i
(2) + O(ε3).

Obviously, for the well-prepared initial conditions, this is true.

Definition 3 (Asymptotic consistency). A numerical method for the isentropic Euler equations with well prepared
initial data, see Equation 2, is called asymptotically consistent if the computed density ρn is given by

ρn = ρ(0) + ε2ρn
(2) + O(ε3) for n = 1, . . . ,N,

where ρ(0) is a constant defined by the initial conditions. Furthermore, the formal limit ε → 0 is a consistent dis-
cretization of the incompressible Euler equations.

We show the asymptotic consistency of the IMEX DG method coupled to the generalized splitting introduced in
Definition 2. For the RS-IMEX splitting this property has previously been shown in [17].
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Remark 2. In the following, internal stages of the IMEX Runge-Kutte method are investigated. Due to Definition 1,
we allow IMEX Runge-Kutta methods where Ã1,1 = 0, which comes down to setting the first internal stage equal to
wn. Obviously, this stage does not have to be considered explicitly. We can therefore safely assume that, without loss
of generality, Ãi,i , 0 by considering stages i > 1 if necessary.

Theorem 1. The IMEX DG method defined in Section 2 coupled with the generalized splitting given in Definition 2
is asymptotically consistent.

Proof. This theorem is a straightforward consequence of the following lemmas. More precisely, Lemmas 1, 2 and
3 show that the density is still well-prepared. From Lemmas 4 and 5 one can conclude that the limiting method is a
consistent discretization of the limiting equation.

The asymptotic expansion of f̃ and f̂ are given by

f̃ = ε−2 f̃ (−2) + ε−1 f̃ (−1) + . . . , and f̂ = ε−2 f̂ (−2) + ε−1 f̂ (−1) + . . . ,

where the corresponding coefficients for the implicit part are given by

f̃ (−2) =

(
0

H(0)Id

)
, f̃ (−1) =

(
0

H(1)Id

)
and f̃ (0) =

(
(1 −M(0))(ρu)(0)
K(0) +H(2)Id

)
,

and consequently for the explicit part

f̂ (−2) =

(
0

(p(0) −H(0))Id

)
, f̂ (−1) =

(
0

(p(1) −H(1))Id

)
and f̂ (0) =

( M(0)(ρu)(0)
(ρu)(0) ⊗ u(0) − K(0) + (p(2) −H(2))Id

)
.

The numerical flux function of the implicit part scales the stabilization of the conservation of mass equation with
ε−2. Due to this special numerical stabilization we can apply Lemma 2 of [17] and obtain that ρn,i

(0) and ρn,i
(1) are

continuous over the whole domain.

Lemma 1. The quantities ρn,i
(0) and ρn,i

(1) are continuous over the whole spatial domain under the assumptions of Theo-
rem 1.

Proof. The numerical stabilization are the only O(ε−2) and O(ε−1), respectively, terms in the discretization of mass
equation. We can therefore apply the proof from [17, Lemma 2].

Lemma 2. The quantities ρn,i
(0) and ρn,i

(1) are constant in space under the assumptions of Theorem 1.

Proof. We consider the O(ε−2) terms of the discretization of the conservation of momentum equation. After integra-
tion by parts, these terms are given by

0 =

i∑
j=1

Ãi, j

[(
∇ ·

(
H(0)(ρ

n, j
(0))Id

)
, ϕ

)
T +

1
2

�
H(0)(ρ

n, j
(0))nk, ϕ

�
∂T

]

+

i−1∑
j=1

Âi, j

[(
∇ ·

(
p′(ρn, j

(0)) −H(0)(ρ
n, j
(0))Id

)
, ϕ

)
T +

1
2

�(
p′(ρn, j

(0)) −H(0)(ρ
n, j
(0))Id

)
· nk, ϕ

�
∂T

]
.

(6)

We assumed that the initial conditions and the previous time instances are well-prepared. Therefore we know that ρn, j
(0)

is constant in space for j < i. The equation thus reduces to

0 =
(
∇H(0)(ρn,i

(0)), ϕ
)
T +

1
2

�
H(0)(ρn,i

(0))nk, ϕ
�
∂T . (7)

The limiting density ρn,i
(0) is continuous over the whole domain, see Lemma 1, therefore the boundary integrals sum up

to zero and we obtain

0 =
(
∇H(0)(ρ

n, j
(0)), ϕ

)
T =

(
H ′(0)(ρ

n,i
(0))∇ρn,i

(0), ϕ
)
T . (8)
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We consider the dth equation in (8) and choose ϕ = ∂xdρ
n,i
(0). Then, one obtains

0 =
(
H ′(0)(ρ

n,i
(0))∂xdρ

n,i
(0), ∂xdρ

n,i
(0)

)
T .

Since we integrate over the whole domain andH ′(0)(ρ
n,i
(0)) is strictly positive, we can conclude that

∂xdρ
n,i
(0) = 0.

Thus ρ(0) is constant in space. In a completely similar way we obtain that ρn,i
(1) is constant in space as well.

Lemma 3. The quantities ρn,i
(0) and ρn,i

(1) are constant in time under the assumptions of Theorem 1.

Proof. We consider the O(1) terms of the discretization of the conservation of mass equation,

0 =
(
ρn,i

(0) − ρn
(0), ϕ

)
T + ∆tn

i∑
j=1

Ãi, j

[
−

(
(1 −M(0))ρ

n, j
(0)u

n, j
(0),∇ϕ

)
T +

1
2

({
(1 −M(0))ρ

n, j
(0)u

n, j
(0), ϕ

}
∂T +

�
ρ

n, j
(2), ϕ

�
∂T

)]

+ ∆tn
i−1∑
j=1

Âi, j

[
−

(
M(0)ρ

n, j
(0)u

n, j
(0),∇ϕ

)
T +

1
2

{
M(0)ρ

n, j,−
(0) un, j,−

(0) , ϕ
}
∂T

]
.

(9)

Due to Lemma 2 and by choosing ϕ ≡ 1 we obtain

0 =
(
ρn,i

(0) − ρn
(0)

)
(1, 1)T +

∆tn

2

i∑
j=1

Ãi, j

({
(1 −M(0))ρ

n, j
(0)u

n, j
(0), 1

}
∂T +

�
ρ

n, j
(2), 1

�
∂T

)
+

∆tn

2

i−1∑
j=1

Âi, j

{
M(0)ρ

n, j
(0)u

n, j
(0), 1

}
∂T .

A periodic domain is assumed in this work, thus all boundary integrals sum up to zero. Overall we obtain

0 =
(
ρn,i

(0) − ρn
(0)

)
(1, 1)T ⇒ ρn,i

(0) = ρn
(0).

Thus, ρn,i
(0) is constant in space and time. In a completely similar way we can show that also ρn,i

(1) is constant in space
and time.

Remark 3. For the ease of presentation, a periodic domain has been assumed. Yet, the above lemma can still be
shown for a non-periodic domain given that one chooses suitable boundary conditions. E.g., for the proof of the
above lemma, it would also suffice to use slip boundary conditions, i.e.,∫

∂Ω

u · nds = 0.

Lemma 4. The O(1) terms of the discretization of the conservation of mass equation are, under the assumptions of
Theorem 1, a consistent discretization of

∇ · u(0) = 0.

Proof. We consider again Equation (9) together with the results of Lemma 2 and 3:

0 = − ∆tn
i∑

j=1

Ãi, j

(
(1 −M(0))u

n, j
(0),∇ϕ

)
T − ∆tn

i−1∑
j=1

Âi, j

(
M(0)u

n, j
(0),∇ϕ

)
T

+
∆tn

2

i∑
j=1

Ãi, j

({
(1 −M(0))u

n, j
(0), ϕ

}
∂T +

1
ρ(0)

�
ρn

(2), ϕ
�
∂T

)
+

∆tn

2

i−1∑
j=1

Âi, j

{
M(0)u

n, j
(0), ϕ

}
∂T .

(10)

This is directly a consistent implicit discontinuous Galerkin discretization of ∇ · u(0) = 0.
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Lemma 5. The O(1) terms of the discretization of the conservation of momentum equation are, under the assumptions
of Theorem 1, a consistent discretization of

(u(0))t + ∇ · (u(0) ⊗ u(0)) +
∇p(2)

ρ(0)
= 0.

Proof. We consider the O(1) terms of the discretization of the momentum equation and directly divide by ρ(0),

0 =
(
un,i

(0) − un
(0), ϕ

)
T + ∆tn

i∑
j=1

Ãi, j

−
Kn, j

(0)

ρ(0)
+
Hn, j

(2) Id

ρ(0)
,∇ϕ


T

+
1
2

K
n, j
(0)

ρ(0)
+
Hn, j

(2)

ρ(0)
Id, ϕ


∂T

+
1
2

�
un, j

(0), ϕ
�
∂T


+ ∆tn

i−1∑
j=1

Âi, j

−
un, j

(0) ⊗ un, j
(0) −

Kn, j
(0)

ρ(0)
+

pn, j
(2) −Hn, j

(2)

ρ(0)
Id,∇ϕ


T

+
1
2

un, j
(0) ⊗ un, j

(0) −
Kn, j

(0)

ρ(0)
+

pn, j
(2) −Hn, j

(2)

ρ(0)
Id, ϕ


∂T


This is a consistent IMEX DG discretization of the limiting momentum equation, where

K(0)(ρ(0),u(0))
ρ(0)

+
Hn, j

(2) (ρ(0), ρ(1), ρ(2))Id

ρ(0)

corresponds to the implicit part and

un, j
(0) ⊗ un, j

(0) −
Kn, j

(0) (ρ(0),u(0))

ρ(0)
+

(
pn, j

(2)(ρ(0), ρ(1), ρ(2)) −Hn, j
(2) (ρ(0), ρ(1), ρ(2))

)
Id

ρ(0)

corresponds to the explicit part.

4. Numerical results

In this section, we evaluate the accuracy and efficiency of the different splitting techniques discussed in Section 2,
cast into the generalized form given by Definition 2. Therefore, we consider two testcases: For the first example an
exact solution is known and it can hence be used for the evaluation of accuracy and efficiency. The second testcase is
more complex and no exact solution is known. Hence, it is employed only to indicate if a splitting is able to predict a
complex three-dimensional behavior and to evaluate its efficiency.

Based on these testcases, in this section we aim to answer the following specific questions:

a) Do the splitting schemes differ in terms of accuracy? Given the unified form of the splitting techniques derived in
this work and the common discretization by an IMEX discontinuous Galerkin discretization, what can be deduced
about their computational efficiency?

b) For the novel RS-IMEX splitting schemes, what is the influence of choosing the reference solution as outlined in
Section 2 on its properties?

Remark 4 (Solving the (non-)linear system of equations). As described in Section 2, a (depending on the splitting
potentially non-linear) system of equations has to be solved for every IMEX Runge-Kutta stage. For this, we use
a matrix-free Newton-GMRES method where the occurring Jacobian-vector product is approximated with a finite
difference according to [28] and [23]. To gain computational efficiency a block-Jacobian preconditioner is equipped.
A more detailed description of the solution strategy can be found in Section 4 of [34].

Remark 5 (Computation of the reference solution). The reference solution for RS-IMEX-qCqI requires the solution of
the incompressible system with a polynomial ansatz of degree qI which typically is different (smaller than) the degree
qC for the compressible solution. This introduces an algorithmic challenge in that two distinct discretization operators
must exist in parallel during the computation (on the same grid) which are coupled uni-directionally via the reference
solution.

An elegant way of achieving this is running two instances of the framework, which communicate by message
passing interfaces (MPI). Since the basis for the incompressible solution is of lesser degree than the compressible
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one, the incompressible solution is communicated to minimize message size. Within the compressible solver, it is then
interpolated onto the local grid via a precomputed Vandermonde matrix.

Note that in the following, we limit the investigations to the coarsest case of qI = 1. Calculating the reference
solution the artificial compressibility-type incompressible solver described in [34] is used. It is equipped with a fully
implicit time discretization using the implicit part of the IMEX Runge-Kutta schemes. In the following we denote the
RS-IMEX-qCqI scheme with qC = qI as RS-IMEX-standard. All other splittings except for the RS-IMEX-qCqI are
parallelized by distributing the elements evenly on the available processors.

Remark 6 (Implementation of HJL and DeTa splitting). As mentioned in Section 2, we use the proposed splittings by
Haack/Jin/Liu [12] and Degond/Tang [8], cast them into the generalized form and discretize them by our high order
IMEX Runge-Kutta DG framework. Originally, the authors of these splitting developed different discretization options
relying strongly on the derivation of an elliptic equation for the density. Hence, we do not evaluate the efficiencies
and accuracies of their schemes, but evaluate the idea of splitting the equations as proposed by the authors.

4.1. Testcase 1: HOT-Vortex
The high order traveling vortex (HOT-vortex) can be seen as an extension of the vortex given by Bispen et al. [3]

and it has been previously used in [17, 34] to investigate the transport properties of the schemes.

Definition 4 (2d HOT-vortex). The equation of state for pressure is defined by p(ρ) = 1
2ρ

2. Initial conditions are
periodic and given on domain Ω = [0, 1]2:

ρ(x, t = 0) = 2 + 250, 000ε2

 1
2 e

2
∆r ∆r − Ei

(
2
∆r

)
r < 1

2

0 otherwise

u(x, t = 0) =

(
1/2
0

)
+ 500

( 1
2 − x2

x1 − 1
2

)
·
e

1
∆r r < 1

2

0 otherwise
,

with r :=
√

(x1 − 1
2 )2 + (x2 − 1

2 )2 and ∆r := r2 − 1
4 .

Ei denotes the exponential integral function

Ei(x) :=
∫ x

−∞

et

t
dt.

We obtain the initialization of the incompressible solver, required for the RS-IMEX-standard and the RS-IMEX-qCqI ,
by setting ε = 0 in Definition 4 and p(2) = κγρ

γ−1
(0) ρ(2). The HOT-vortex example describes the constant advection of a

vortex in x1-direction with a transport speed of 0.5, therefore the exact solution is given by a translation of the initial
state as

ρ(x, t) = ρ
(
x − (0.5t, 0)T , t = 0

)
, u(x, t) = u

(
x − (0.5t, 0)T , t = 0

)
. (11)

To evaluate the accuracy of the numerical solution, we use the L2-norm at end time T as error measurement

e∆x := ‖wN − w(T )‖L2(Ω),

where wN denotes the numerical approximation at T = tN and w(T ) denotes the corresponding exact solution given
by Equation (11). The mesh parameter ∆x is defined to be ∆x = 1/ dim

√
ne.

Evaluation of accuracy. We consider this testcase for the Mach numbers ε = 10−1, 10−2, 10−3, 10−4 and compare the
errors e∆x for the different splittings. For all calculations, the parameters of the linear solver and the time step were
held constant. Here, we use a fourth order discretization in space and time (qC = 3 with IMEX-ARK-4A2 from [25]).
Note that the RS-IMEX-standard splitting scheme is the same as used in [34].

Figure 1 shows that there are only very slight differences between the different splittings concerning their errors
and convergence properties. All considered schemes have the desired order of convergence. An exception is the DeTa
splitting for ε = 10−4 where no stable solution could be found as machine accuracy issues become dominant for the
matrix-free implementation of the nonlinear scheme. Concluding, all the considered schemes show comparable errors
and asymptotic consistency. For the evaluation of the efficiency, we can thus determine the required computational
time on a single fixed mesh as done in the next paragraph.
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Figure 1: Overall convergence at different Mach numbers for HOT-Vortex with 4th order (qC = 3) discretization in space and time. Colors/symbols
stand for different splitting methods; the triangles indicate the expected order of convergence. For ε = 10−4, no stable solution could be found for
the DeTa scheme as machine accuracy issues become dominant for the matrix-free implementation.

Evaluation of efficiency. For all calculations, the finest grid of Figure 1 with 322 elements is used and the computa-
tional costs are evaluated for a third and a fourth order spatial and temporal discretization (qC = 2 with IMEX-ARS-
443 by [1] and qC = 3 with IMEX-ARK-4A2 by [25], respectively). The abort criteria of the linear and non-linear
solvers are chosen to obtain the same residual reduction for the different schemes in each graph.

Figure 2 shows a qualitatively similar behavior for qC = 2 and qC = 3 with only slight differences: All linear
schemes have a qualitatively similar behavior, showing convergence to a limit in computational time for a decreasing
Mach number. It is visible that the HJL-splitting is in general as least as efficient as the fastest variant of the RS-IMEX
splitting. In case that the matrix-free implementation is able to find a solution to the DeTa splitting, it will for ’large’
ε be more efficient than the other approaches. As there are issues due to the matrix-free implementation, results for
the DeTa scheme have not been plotted in Figure 2 for qC = 3.

Evaluation of RS-IMEX reference solution variant. Regarding the differences between the RS-IMEX variants, we
note from Figure 1 that no perceivable differences for the selected reference solution versions occur. In terms of
computational resources (Figure 2), the RS-IMEX-mean and RS-IMEX-min are very similar but cheaper than the RS-
IMEX-qCqI variants. Moreover, RS-IMEX-qCqI improves the RS-IMEX-standard scheme and for the qC = 2 case
is as efficient as RS-IMEX-mean for ε = 10−4. Note that slight deviations of RS-IMEX-31 from the expected shape
(qC = 3 at ε ≤ 10−3) can be caused by the non optimized load balancing introduced by coupling the compressible and
incompressible solver.

4.2. Testcase 2: Taylor-Green-Vortex
The Taylor-Green vortex was originally introduced in [31] and has been adopted to the non-dimensional isentropic

Euler equations in [34]. The incompressible initialization field required for the standard RS-IMEX and the RS-IMEX-
qCqI scheme is given by
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Figure 2: Comparison of computational time on 24 cores of different splittings for HOTVortex at different Mach numbers (left: 3rd order, right: 4th

order). Again, for qC = 3, the DeTa splitting is not plotted due to issues of the matrix-free implementation.

Definition 5 (Taylor-Green-Vortex (incompressible)). Initial conditions of domain Ω = [0, 2π]3 with periodic bound-
ary conditions:

ρ(0) = 1

u(0)(x, t = 0) = V0

 cos(x1) cos(x2) cos(x3)
− cos(x1) sin(x2) cos(x3)

0


p(2)(x, t = 0) =

ρ(0)V2
0

16
(cos(2x1) + cos(2x2))(cos(2x3) + 2),

where V0 denotes a constant initial velocity which is chosen to be V0 = 1.

The compressible initialization is given by

Definition 6 (Taylor-Green-Vortex (compressible, isentropic)). Initial conditions of domain Ω = [0, 2π]3 with periodic
boundary conditions:

ρ(x, t = 0) = ρ(0) + ε2 V2
0ρ(0)

2−γ

16γκ
(cos(2x1) + cos(2x2)) (cos(2x3) + 2),

u(x, t = 0) = V0

 cos(x1) cos(x2) cos(x3)
− cos(x1) sin(x2) cos(x3)

0


p(ρ) =

1
2
ρ2.

This inviscid testcase is used as an indicator if the splittings are able to predict a complex three-dimensional
behavior. Secondly, we use it to evaluate the computational costs.

Evaluation of solution quality. We use a cartesian box with 163 elements, a polynomial degree of qC = 3 and the
IMEX-ARS-443 scheme from [1]. We consider the change of the scaled compressible kinetic energy

− 1
ε2

∂Ekin,comp

∂t
= −1

2
∂

∂t

∫
Ω

ρ‖u‖22dΩ,

as a measure for the dissipative properties of the schemes. For a perfectly resolved simulation, i.e., no discretization
influence, it should remain zero. For the chosen resolution it can be expected that the kinetic energy remains constant
and starts decreasing after some time.
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Figure 3: Scaled change rate of compressible kinetic energy for TGV with different splitting schemes (163 spatial elements, qC = 3, IMEX-ARS-
443) for different Mach numbers. Symbols additionally visualize superposing curves. Again, for ε = 10−4, the DeTa splitting is not plotted due to
issues of the matrix-free implementation.

Figure 3 illustrates that all considered splitting schemes have the same expected behavior. The results of the RS-
IMEX-min are not displayed as large oscillations in the change rate of the kinetic energy are present. This instability
can be cured by a smaller time step, indicating that for this more complex testcase, the choice of the reference solution
could become more crucial than for the HOT-vortex. This issue warrants future study. In the following, we compare
all splittings except for the RS-IMEX-min concerning their computational costs.

Evaluation of efficiency. As observed for the HOT-vortex in Figure 2, Figure 4 shows that the non-linear DeTa splitting
is the most efficient scheme for ε = 10−1, but here the least efficient for smaller Mach numbers. Again, all linear
schemes converge to a limit in computational time for a decreasing Mach number. Here, the HJL-splitting is more
efficient than the RS-IMEX schemes for ε < 10−1. It is obvious that modifying the standard RS-IMEX scheme results
in large savings in computational time but still remains computationally more costly than the HJL-splitting.

Evaluation of RS-IMEX reference solution variant. Comparing the RS-IMEX-standard with the RS-IMEX-31 scheme
shows a nearly constant saving in computational costs, i.e., we see the savings calculating the incompressible solution
on a lower polynomial degree, but do not see a Mach number dependent influence of a less accurate incompressible
reference solution. The same results hold for the RS-IMEX-mean variant. Again, for ε = 10−4 the RS-IMEX-mean
and RS-IMEX-31 scheme are similar efficient.

Concluding remarks. The considered testcases show that in terms of accuracy, the particular choice of the splitting is
not crucial, but can affect stability and efficiency. A splitting which is linear in the implicit part is beneficial for the
considered matrix-free implementation and Mach numbers ε ≤ 10−2.
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Figure 4: Comparison of computational time with 144 cores of different splittings for TGV at different Mach numbers (163 spatial elements,
qC = 3, IMEX-ARS-443). Again, for ε = 10−4, the DeTa splitting is not plotted due to issues of the matrix-free implementation.

With the considered testcases it is not possible to identify the most efficient scheme as it differs for the two
testcases.Nevertheless, the RS-IMEX-standard splitting scheme can be improved either using RS-IMEX-mean or RS-
IMEX-qCqI . Especially if the calculation of the incompressible solution is computationally costly as for the Taylor-
Green-Vortex, RS-IMEX-qCqI can improve the standard RS-IMEX scheme. Choosing the minimum as a reference
solution (RS-IMEX-min) for this testcase results in a less stable scheme, while the - comparably simple - RS-IMEX-
mean variant was successful.

5. Conclusion and outlook

In the low Mach number limit, explicit time integration of the Euler equations becomes infeasible due to the
prohibitively strict CFL condition. An established method of overcoming this limitation are flux splittings which aim
at separating fast and slow waves without loss of hyperbolicity of the subsystems. In combination with IMEX time
integrators, flux split formulations can then provide efficient and accurate discretizations in the low Mach number
limit. A number of different formulations exist in literature, among them the RS-IMEX splitting presented in [17, 18,
29, 34], but the identification of the best approach is still elusive.

In this work, we have presented two contributions towards the goal of identifying and evaluating suitable splittings.
Firstly, we have generalized the proof of asymptotic consistency for an IMEX discontinuous Galerkin method to a
generalized splitting of the isentropic Euler equations. We have found that different splittings for the isentropic Euler
equations, one given by Haack/Jin/Liu [12], one given by Degond/Tang [8] and three newly-developed ones based
on the RS-IMEX splitting fit this generalized form and induce thus an asymptotically consistent overall numerical
method.

Secondly, taking advantage of the generalized form of these splittings, we have established a numerical frame-
work based on a discontinuous Galerkin discretization that allows side-by-side comparison of the splitting methods.
Methods were compared with respect to accuracy and efficiency. We found that all splittings performed very similar
in terms of accuracy for the considered two and three dimensional testcases. Regarding efficiency, the conclusions are
not as clear-cut. The testcases showed that for ε = 10−1 the splitting based on Degond/Tang [8] is most efficient. For
smaller Mach numbers the splitting based on Haack/Jin/Liu [12] is most efficient but the RS-IMEX-mean scheme can
compete in some cases.

Among the RS-IMEX schemes, the choice of the reference solution has a strong influence on computational time,
with RS-IMEX-standard being the most expensive one and the RS-IMEX-mean leading to a considerable reduction in
computational time without loss of accuracy. The RS-IMEX-min splitting has shown to be less stable than the other
splittings.

Ongoing work deals with the extension of this work to other types of equations and the analytical investigation of
uniform (in ε) convergence orders.
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Appendix A. IMEX Runge-Kutta methods

For the sake of completeness, we give the Butcher tableaux of the two IMEX Runge-Kutta methods used in this
work, see Tables A.1-A.2.

0 0 0 0 0 0 0 0 0 0 0 0
1/2 0 1/2 0 0 0 1/2 1/2 0 0 0 0
2/3 0 1/6 1/2 0 0 2/3 11/18 1/18 0 0 0
1/2 0 -1/2 1/2 1/2 0 1/2 5/6 -5/6 1/2 0 0
1 0 3/2 -3/2 1/2 1/2 1 1/4 7/4 3/4 -7/4 0

0 3/2 -3/2 1/2 1/2 1/4 7/4 3/4 -7/4 0

Table A.1: IMEX-ARS-443[1]. Left: implicit, right: explicit.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1/3 -1/6 1/2 0 0 0 0 0 1/3 1/3 0 0 0 0 0 0
1/3 1/6 -1/3 1/2 0 0 0 0 1/3 1/6 1/6 0 0 0 0 0
1/2 3/8 -3/8 0 1/2 0 0 0 1/2 1/8 0 3/8 0 0 0 0
1/2 1/8 0 3/8 -1/2 1/2 0 0 1/2 1/8 0 3/8 0 0 0 0
1 -1/2 0 3 -3 1 1/2 0 1 1/2 0 -3/2 0 2 0 0
1 1/6 0 0 0 2/3 -1/2 2/3 1 1/6 0 0 0 2/3 1/6 0

1/6 0 0 0 2/3 -1/2 2/3 1/6 0 0 0 2/3 1/6 0

Table A.2: IMEX-ARK-4A2[25]. Left: implicit, right: explicit.
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[34] J. Zeifang, K. Kaiser, A. Beck, J. Schütz, and C.-D. Munz. Efficient high-order discontinuous Galerkin computations of low Mach number

flows. UHasselt CMAT Preprint UP-17-04, 2017.

15



UHasselt Computational Mathematics Preprint
Series

2018
UP-18-01 Klaus Kaiser, Jonas Zeifang, Jochen Schütz, Andrea Beck and Claus-

Dieter Munz, Comparison of different splitting techniques for
the isentropic Euler equations, 2018

2017
UP-17-12 Carina Bringedal, Tor Eldevik, Øystein Skagseth and Michael A.

Spall, Structure and forcing of observed exchanges across
the Greenland-Scotland Ridge, 2017

UP-17-11 Jakub Wiktor Both, Kundan Kumar, Jan Martin Nordbotten, Iuliu
Sorin Pop and Florin Adrian Radu, Linear iterative schemes for
doubly degenerate parabolic equations, 2017

UP-17-10 Carina Bringedal and Kundan Kumar, Effective behavior near
clogging in upscaled equations for non-isothermal reactive
porous media flow, 2017

UP-17-09 Alexander Jaust, Balthasar Reuter, Vadym Aizinger, Jochen Schütz
and Peter Knabner, FESTUNG: A MATLAB/GNU Octave tool-
box for the discontinuous Galerkin method. Part III: Hy-
bridized discontinuous Galerkin (HDG) formulation, 2017

UP-17-08 David Seus, Koondanibha Mitra, Iuliu Sorin Pop, Florin Adrian Radu
and Christian Rohde, A linear domain decomposition method
for partially saturated flow in porous media, 2017

UP-17-07 Klaus Kaiser and Jochen Schütz, Asymptotic Error Analysis of
an IMEX Runge-Kutta method, 2017

UP-17-06 Hans van Duijn, Koondanibha Mitra and Iuliu Sorin Pop, Travelling
wave solutions for the Richards equation incorporating non-
equilibrium effects in the capillarity pressure, 2017



UP-17-05 Hans van Duijn and Koondanibha Mitra, Hysteresis and Horizon-
tal Redistribution in Porous Media, 2017

UP-17-04 Jonas Zeifang, Klaus Kaiser, Andrea Beck, Jochen Schütz and Claus-
Dieter Munz, Efficient high-order discontinuous Galerkin com-
putations of low Mach number flows, 2017

UP-17-03 Maikel Bosschaert, Sebastiaan Janssens and Yuri Kuznetsov, Switch-
ing to nonhyperbolic cycles from codim-2 bifurcations of
equilibria in DDEs, 2017

UP-17-02 Jochen Schütz, David C. Seal and Alexander Jaust, Implicit mul-
tiderivative collocation solvers for linear partial differential
equationswith discontinuous Galerkin spatial discretizations,
2017

UP-17-01 Alexander Jaust and Jochen Schütz, General linear methods for
time-dependent PDEs, 2017

2016
UP-16-06 Klaus Kaiser and Jochen Schütz, A high-ordermethod forweakly

compressible flows, 2016

UP-16-05 Stefan Karpinski, Iuliu Sorin Pop, Florin A. Radu, A hierarchical
scale separation approach for the hybridized discontinuous
Galerkin method, 2016

UP-16-04 Florin A. Radu, Kundan Kumar, Jan Martin Nordbotten, Iuliu Sorin
Pop, Analysis of a linearization scheme for an interior penalty
discontinuous Galerkinmethod for two phase flow in porous
media with dynamic capillarity effects , 2016

UP-16-03 Sergey Alyaev, Eirik Keilegavlen, Jan Martin Nordbotten, Iuliu Sorin
Pop, Fractal structures in freezing brine, 2016

UP-16-02 Klaus Kaiser, Jochen Schütz, Ruth Schöbel and Sebastian Noelle, A
new stable splitting for the isentropic Euler equations, 2016

UP-16-01 Jochen Schütz and Vadym Aizinger, A hierarchical scale sepa-
ration approach for the hybridized discontinuous Galerkin
method, 2016

All rights reserved.

2


