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Abstract

In this paper, we construct approximations of the microscopic solution of a nonlinear
reaction–diffusion equation in a domain consisting of two bulk-domains, which are
separated by a thin layer with a periodic heterogeneous structure. The size of the
heterogeneities and thickness of the layer are of order ε, where the parameter ε is small
compared to the length scale of the whole domain. In the limit ε → 0, when the thin
layer reduces to an interface Σ separating two bulk domains, a macroscopic model with
effective interface conditions across Σ is obtained. Our approximations are obtained
by adding corrector terms to the macroscopic solution, which take into account the
oscillations in the thin layer and the coupling conditions between the layer and the
bulk domains. To validate these approximations, we prove error estimates with respect
to ε. Our approximations are constructed in two steps leading to error estimates of

order ε
1
2 and ε in the H1-norm.

1 Introduction

Problems including reactive transport processes through thin layers with a heterogeneous
structure play an important role in many applications, especially from biosciences, medical
sciences, geosciences, and material sciences. We mention here as an example the physio-
logical processes in blood vessels, where the endothelial layer, separating the lumen (region
occupied by blood flow) from the vessel wall, mediates and controls the exchange between
these two regions. In [31] a detailed model for processes at the endothelium is given by
using phenomenologically derived effective interface laws. However, multi-scale techniques
for the rigorous derivation of such laws starting from microscopic models, the study of their
validity range and of the accuracy of the approximations are urgently needed. The tech-
niques developed in this paper give an important contribution to this field, even though our
model problem is limited to reaction–diffusion processes, and thus omitting further aspects
like e.g. advective transport or mechano-chemical interactions.

In this paper, we consider a nonlinear reaction–diffusion equation in a domain Ωε con-
sisting of two bulk-domains Ω+

ε and Ω−ε which are separated by a thin layer ΩMε with a
periodic heterogeneous structure. The thickness of the thin layer as well as the period of
the heterogeneities are of order ε > 0, where the parameter ε is small compared to the
length scale of the whole domain Ωε. Across the interfaces S±ε between the bulk-domains
Ω±ε and the thin layer ΩMε we assume continuity of the solution and its normal flux. The
numerical computation of the solution to this type of problems faces a high complexity.
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Therefore, we construct approximations of the microscopic solution which can be calcu-
lated with less numerical effort, and prove error estimates between the approximation and
the microscopic solution with respect to the scaling parameter ε. Such error estimates are
important for the justification of the approximation as well as for predictions about its ac-
curacy. There is a rich literature on problems in thin domains with applications in solid
mechanics, wave diffraction, porous media and so on, where we have to mention the mono-
graphs [29] and [3]. Results about the derivation of effective transmission conditions by
multi-scale techniques for domains separated by thin heterogeneous layers can be found e.g.
in [4, 6, 7, 8, 10, 11, 13, 14, 22, 25, 28]. However, error estimates for thin heterogeneous
layers coupled to bulk-domains have hardly been considered in literature so far. We mention
here the paper [27], where an elliptic problem in a domain including a thin heterogeneous
layer with thickness of order ε is treated for different scalings for the diffusion coefficients
with respect to ε. More precisely, based on the Bakhvalov-ansatz the author derives higher
order asymptotic approximations for the microscopic solution and derives error estimates
with respect to ε. This method uses high regularity results for the microscopic and the
macroscopic solutions, and therefore for the data. The asymptotic expansion is formally ex-
tended to nonlinear and nonstationary problems. In [1, 5, 21] the asymptotic behavior of a
fluid flow through a filter formed by ε-periodic distribution of obstacles of size εβ distributed
on a hypersurface is considered and error estimates are proved. In [17] a similar geometrical
setting was considered and the Poisson equation with mixed boundary conditions on the
boundary of the obstacles was studied. In [30] a Neumann problem in a domain containing
a thin filter consisting of periodically distributed channels is considered.

In [10, 11, 25] reaction-diffusion equations through thin heterogeneous layers were studied
for different scalings in the thin layer, and effective models for ε → 0 were derived. In
the singular limit, the thin layer reduces to a (n − 1)-dimensional interface Σ separating
the bulk-regions Ω+ and Ω−. In these bulk-domains the evolution of the limit problem
carries the same structure as in the microscopic problem, whereas at the interface Σ effective
interface laws emerge. Of particular importance is the choice of the scaling of the coefficients,
especially in the equations in the thin layer. The scaling highly influences the structure of
the macroscopic model and depends on the particular application.

In the present paper, we consider a specific scaling from [10] leading to a reaction-diffusion
equation on the interface Σ in the limit ε → 0. This effective interface condition for the
macroscopic model is similar to a result in [27] (see the interface condition (1.10)). However,
in our case we consider a different scaling for the microscopic equation, and a nonlinear and
nonstationary problem. Further, we consider a scaling for the reaction term in the thin layer
which gives an additional contribution in the effective interface condition. For this situation,
we investigate the quality of the approximation of the microscopic solution by means of the
macroscopic one. In general, we cannot expect strong convergence of the gradients or high-
order error estimates with respect to ε. For such results we have to add additional corrector
terms to the macroscopic solution which take into account the oscillations in the thin layer
and also the coupling conditions between the bulk-regions and the layer. The construction
of the approximations is made in two steps. Firstly, we add to the macroscopic solution in
the thin layer a corrector of order ε, which carries information about the oscillations in the
layer. This leads to error estimates of order ε

1
2 in the H1-norms, see Theorem 1. To obtain

a better estimate, in a second step, we add a corrector term of first order to the macroscopic
solutions in the bulk-domains (which equilibrates the discontinuity of the approximation
across S±ε ) and an additional second order corrector to the macroscopic solution in the layer
(which equilibrates the discontinuity of the normal fluxes of the approximation across S±ε ).
This strategy of stepwise building up the correctors has also been used e.g. in [16]. The
resulting approximation leads to an error estimate of order ε in the H1-norms, see Theorem
2.

The major challenge in our paper is the simultaneous scale transition for the thickness of
the layer and the periodic heterogeneous structure within the layer, as well as the coupling
between the bulk-domains and the thin layer, where we additionally have to take into account
different kinds of scaling. In this context, the presence of nonlinear reaction terms creates
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additional difficulties. These specific features of our problem are also reflected by differences
in the form of the correctors in the two regions (bulk domains and thin layer): The order
of the corrector terms with respect to ε is different in the two regions. Furthermore, in the
layer, the correctors are obtained by products of the derivatives of the macroscopic solution
and solutions of suitable cell problems on a bounded reference element Z, whereas in the
bulk-domains the correctors include solution of boundary layer problems in infinite stripes.

To justify the determined approximations, we prove error estimates. Roughly speaking,
we apply the microscopic differential operator to the microscopic solution as well as to the
approximations and subtract the terms from each other. To estimate the arising terms on
the right hand side, the main idea is to represent solenoidal vector fields by the divergence
of skew symmetric matrices. Integration by parts then yields an additional factor ε which
can be exploited for the error estimates. This approach has been previously used in [18] for
vector fields defined on the standard periodicity cell and periodic in all directions, and in
[24] for boundary layers. In our case the situation is more difficult and we have to construct
skew-symmetric matrices adapted to the structure of our problem. More precisely, these
matrices have to be such that boundary terms which occur at the interfaces between the
bulk domains and the thin layer vanish.

Our paper is structured as follows: In Section 2 we present the microscopic model, the
assumptions on the data as well as the a priori estimates for the microscopic solution. In
Section 3 we give the general form of the two approximations for the microscopic solution
and state the corresponding error estimates. The macroscopic model and the higher order
correctors are introduced in Sections 4 and 5 respectively. The proof for the error estimates
is given in Section 6. We conclude the paper with a short appendix about the regularity of
the solution to the macroscopic problem.

1.1 Original contributions

In the literature, there are several results dealing with singular limits for reactive transport
processes through thin layers with heterogeneous structures. However, results including
error estimates with respect to ε seem to be rather rare, especially with regard to nonlinear
problems. In this paper we construct asymptotic approximations for the microscopic solution
of a semilinear reaction-diffusion problem in a domain including a thin heterogeneous layer,
and derive error estimates with respect to the scaling parameter ε. Such error estimates are
important for the justification of the approximation. The main contributions of our paper
are:

- the construction of approximations for the microscopic solution including correctors
and boundary layers adapted to the scaling in the microscopic problem and the mi-
croscopic structure of the thin layer, as well as to the transmission conditions at the
bulk-layer interfaces,

- the derivation of error estimates of order
√
ε and ε in the context of nonlinear problems

which combine the classical approach of homogenization for microscopic structures
with a singular limit approach,

- proving of error estimates under low regularity assumptions on the data and therefore
low regularity for the microscopic and the macroscopic solution,

- extending the approach for the representation of solenoidal vector fields by the diver-
gence of skew symmetric matrices to boundary layers involving transmission condi-
tions.

2 The microscopic model

We consider the domain Ωε := Σ × (−ε − H,H + ε) ⊂ Rn with fixed H ∈ N, n ≥ 2, and
Σ = (0, l1)× . . . ,×(0, ln−1) ⊂ Rn−1 with l = (l1, . . . , ln−1) ∈ Nn−1. Further, let ε > 0 be a
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sequence with ε−1 ∈ N. The set Ωε consists of three subdomains, see Figure 1, given by

Ω+
ε := Σ× (ε,H + ε),

ΩMε := Σ× (−ε, ε),
Ω−ε := Σ× (−ε−H,−ε).

The domains Ω±ε and ΩMε are separated by an interface S±ε , i. e.,

S+
ε := Σ× {ε} and S−ε := Σ× {−ε},

hence, we have Ωε = Ω+
ε ∪ Ω−ε ∪ ΩMε ∪ S+

ε ∪ S−ε .

Figure 1: The microscopic domain containing the thin layer Ωε with periodic structure for
n = 2. The heterogeneous structure for the thin layer is modeled by the diffusion coefficient
DM
ε , see Assumption (A1).

As mentioned above, for ε→ 0 the membrane ΩMε reduces to an interface Σ×{0}, which
we also denote by Σ suppressing the n-th component, and we define

Ω+ := Σ× (0, H) and Ω− := Σ× (−H, 0),

and Ω := Ω+ ∪Σ∪Ω− = Σ× (−H,H). The microscopic structure within the thin layer ΩMε
can be described by shifted and scaled reference elements. We define

Y k := (0, 1)k for k ∈ N,
Z := Y n−1 × (−1, 1).

We denote the upper and lower boundary of Z by

S+ := Y n−1 × {1} and S− := Y n−1 × {−1}.

Now, we are looking for a solution cε = (c+ε , c
M
ε , c

−
ε ) with c±ε : (0, T ) × Ω±ε → R and

cMε : (0, T )× ΩMε → R of the following microscopic problem

∂tc
±
ε −∇ ·

(
D±∇c±ε

)
= f±ε (t, x, c±ε ) in (0, T )× Ω±ε ,

1

ε
∂tc

M
ε −

1

ε
∇ ·
(
DM
ε ∇cMε

)
=

1

ε
gMε (t, x, cMε ) in (0, T )× ΩMε ,

(1a)
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together with continuous transmission conditions across the interfaces S±ε

c±ε = cMε on (0, T )× S±ε ,

−D±∇c±ε · ν = −1

ε
DM
ε ∇cMε · ν on (0, T )× S±ε ,

(1b)

where ν denotes the outer unit normal on S±ε with respect to ΩMε , and the outer boundary
conditions

D±∇c±ε · ν = 0 on (0, T )× Σ× {±(H + ε)},
cε is Σ-periodic,

(1c)

and the initial condition

cε(0, x) = c0ε(x) :=

{
c0,±ε (x̄, xn ∓ ε) for x ∈ Ω±ε ,

c0,Mε (x) for x ∈ ΩMε .
(1d)

In the following, we define for an arbitrary interval I ⊂ R and a rectangle W ⊂ Rn−1

the Sobolev space of W -periodic functions, i. e., the space of functions which are W -periodic
with respect to first n− 1 components:

Hk
#(W × I) :=

{
u ∈ Hk(W × I) : u is W -periodic

}
,

for k ∈ N. In a similar way we also use the index # for spaces with Y n−1-periodic functions,
e. g., C0,1

#

(
Z
)

:=
{
u ∈ C0,1

(
Z
)

: u is Y n−1-periodic
}

.

Assumptions on the data:

(A1) It holds D± ∈ Rn×n is symmetric and positive-definite, and DM
ε (x) = DM

(
x
ε

)
with

DM ∈ C0,1
#

(
Z
)n×n

. Further, DM is symmetric and coercive, i. e., there exists a
constant c0 > 0 such that

DM (y)ξ · ξ ≥ c0‖ξ‖2, for all y ∈ Z, ξ ∈ Rn.

(A2) We have f±ε (t, x, z) = f±
(
t, xε , z

)
with f± : [0, T ] × Rn × R → R is continuous, Y n-

periodic with respect to the second variable, and uniformly Lipschitz continuous with
respect to the third variable. The uniform Lipschitz condition ensures the estimate

|f±(t, y, z)| ≤ C
(
1 + |z|

)
for all (t, y.z) ∈ [0, T ]× Rn × R.

(A3) We have gMε (t, y, z) = gM
(
t, xε , z

)
with gM : [0, T ] × Rn−1 × [−1, 1] × R → R is

continuous, uniformly Lipschitz continuous with respect to the last variable, and Y n−1-
periodic with respect to the second variable. As above, we have

|gM (t, y, z)| ≤ C
(
1 + |z|

)
for all (t, y, z) ∈ [0, T ]× Rn−1 × [−1, 1]× R.

(A4) For the initial functions, we assume c0,±ε ∈ H1
#(Ω±) and c0,Mε ∈ H1

#(ΩMε ) with c0,±ε |Σ =

c0,Mε |S±ε , and they fulfill the following estimate

∥∥c0,±ε ∥∥
H1(Ω±)

+
1√
ε

∥∥c0,Mε ∥∥
H1(ΩMε )

≤ C.

Further we assume that there exist c0,± ∈ H1
#(Ω±) and c0,M ∈ H1

#(Σ) with c0,±|Σ =

c0,M , such that ∥∥c0,±ε − c0,±
∥∥
L2(Ω±)

+
1√
ε

∥∥c0,Mε − c0,M
∥∥
L2(ΩMε )

≤ Cε. (2)
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Weak formulation A function cε ∈ L2((0, T ), H1
#(Ωε)) ∩ H1((0, T ), L2(Ωε)) is called a

weak solution of Problem (1a), if for all φ ∈ H1
#(Ωε), and almost every t ∈ (0, T ) it holds

that ∑
±

[∫
Ω±ε

∂tc
±
ε φdx+

∫
Ω±ε

D±∇c±ε · ∇φdx
]

+
1

ε

∫
ΩMε

∂tc
M
ε φdx

+
1

ε

∫
ΩMε

DM
ε ∇cMε · ∇φdx =

∑
±

∫
Ω±ε

f±ε
(
c±ε
)
φdx+

1

ε

∫
ΩMε

gMε
(
cMε
)
φdx

(3)

together with the initial condition (1d).
To work on the fixed domains Ω±, we shift the ε-dependent domains Ω±ε to the fixed

domains Ω±, and give an equivalent formulation for a weak solution on the fixed domains
Ω±. We define

c̃±ε : (0, T )× Ω± → R, c̃±ε (t, x) := c±ε (t, x̄, xn ± ε).

Then cε is a weak solution of Problem (1a), iff c̃±ε ∈ L2((0, T ), H1
#(Ω±))∩H1((0, T ), L2(Ω±))

and cMε ∈ L2((0, T ), H1
#(ΩMε )) ∩H1((0, T ), L2(ΩMε )) with cMε |S±ε = c̃±ε |Σ, and for all φ±ε ∈

H1
#(Ω±) and φMε ∈ H1

#(ΩMε ) with φ±ε |Σ = φMε |S±ε it holds that

∑
±

[∫
Ω±

∂tc̃
±
ε φ
±
ε dx+

∫
Ω±

D±∇c̃±ε · ∇φ±ε dx
]

+
1

ε

∫
ΩMε

∂tc
M
ε φ

M
ε dx

+
1

ε

∫
ΩMε

DM
ε ∇cMε · ∇φMε dx =

∑
±

∫
Ω±

f±ε
(
c̃±ε
)
φ±ε dx+

1

ε

∫
ΩMε

gMε
(
cMε
)
φMε dx

(4)

together with the initial condition

c̃ε(0, x) =

{
c0,±ε (x) for x ∈ Ω±,

c0,Mε (x) for x ∈ ΩMε .

Notation 1. In the following, we suppress the ·̃ and use the same notation c±ε for both, the
shifted function, and the function itself.

We have the following existence and uniqueness result for the microscopic problem. A
detailed proof can be found in [10], which can be easily extended to our slightly more general
assumptions.

Proposition 1. There exists a unique weak solution c±ε ∈ L2((0, T ), H1(Ω±)) with ∂tc
±
ε ∈

L2((0, T ), L2(Ω±)) and cMε ∈ L2((0, T ), H1(ΩMε )) with ∂tc
M
ε ∈ L2((0, T ), L2(ΩMε )) of the

Problem (1) (satisfying the weak formulation (4)). Additionally, the following a priori esti-
mates are valid:

‖∂tc±ε ‖L2((0,T ),L2(Ω±)) + ‖c±ε ‖L∞((0,T ),L2(Ω±)) +
∥∥∇c±ε ∥∥L2((0,T ),L2(Ω±))

≤ C,

‖∂tcMε ‖L2((0,T ),L2(ΩMε )) + ‖cMε ‖L∞((0,T ),L2(ΩMε )) +
∥∥∇cMε ∥∥L2((0,T ),L2(ΩMε ))

≤ C
√
ε.

3 Main results

In this section we state our main results. We consider approximations of cε including cor-
rectors of first and second order, leading to different orders of convergence with respect to
the scaling parameter ε. The definitions of the macroscopic solution of zeroth order and the
corrector terms can be found in Section 4 and 5.
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3.1 Correctors including terms of order ε in the layer

Let us define the first order approximation cε,app,1 : (0, T )× Ωε → R of cε by

cε,app,1(t, x) :=


c+ε,app,1(t, x) := c+0 (t, x) for x ∈ Ω+,

cMε,app,1(t, x) := cM0 (t, x̄) + εcM1
(
t, x̄, xε

)
for x ∈ ΩMε ,

c−ε,app,1(t, x) := c−0 (t, x) for x ∈ Ω−.

(5)

Remark 1. The first order corrector term cM1 in the layer in the definition of cε,app,1

takes into account the oscillations within the thin layer. Adding this corrector leads to a
discontinuity of cε,app,1 across the interfaces S±ε . Of course, it is also possible to add an

additional first order corrector term c±,bl
1 in the bulk-domains Ω±ε (see the definition of

cε,app,2 below), however, this will not improve the order of convergence.

The error between the microscopic solution cε and the approximation cε,app,1 is estimated
in the following theorem:

Theorem 1. Let c±0 ∈ L2((0, T ), H2(Ω±)) with ∂tc
±
0 ∈ L2((0, T ), L2(Ω±)) and ∇x̄c±0 ∈

L∞((0, T ) × Ω±), and cM0 ∈ L2((0, T ), H2(Σ)) with ∂tc
M
0 ∈ L2((0, T ), L2(Σ)). Then, the

following error estimate is valid∑
±

∥∥c±ε − c±ε,app,1

∥∥
L2((0,T ),H1(Ω±))

+
1√
ε

∥∥cMε − cMε,app,1

∥∥
L2((0,T ),H1(ΩMε ))

≤ C1

√
ε,

and the constant C1 = C1(c±0 , c
M
0 ) > 0 fulfills

C1 ≤ C
(

1 +
∥∥cM0 ∥∥L2((0,T ),H2(Σ))

+
∥∥∂tcM0 ∥∥L2((0,T ),L2(Σ))

+
∑
±

[∥∥c±0 ∥∥L2((0,T ),H2(Ω±))
+
∥∥∂tc±0 ∥∥L2((0,T ),L2(Ω±))

+
∥∥∇x̄c±0 ∥∥L∞((0,T )×Ω±)

])
.

Theorem 1 is a direct consequence of the more general result in Theorem 3 in Section
6.2.

3.2 Correctors including terms up to order ε2 in the layer

For higher order error estimates, we first have to overcome the problem of discontinuity
across S±ε of the approximation cε,app,1 by adding a first order corrector term in the bulk-
domains, see Remark 1. However, this leads to an additional normal flux from the bulk-
regions into the thin layer. Therefore, we have to add an additional second order corrector
(the diffusion in the layer is of order ε−1) in the layer. This leads to the following second
order approximation: We define cε,app,2 : (0, T )× Ωε → R by

cε,app,2(t, x) :=


c+ε,app,2(t, x) for x ∈ Ω+

cMε,app,2(t, x) for x ∈ ΩMε
c−ε,app,2(t, x) for x ∈ Ω−

:=


c+0 (t, x) + εc+,bl

1

(
t, x, xε

)
for x ∈ Ω+,

cM0 (t, x̄) + εcM1
(
t, x̄, xε

)
+ ε2cM2

(
t, x̄, xε

)
for x ∈ ΩMε ,

c−0 (t, x) + εc−,bl
1

(
t, x, xε

)
for x ∈ Ω−.

(6)

Remark 2. Again, the approximation cε,app,2 is not continuous across the interfaces S±ε .

Theorem 2. Let c±0 ∈ L2((0, T ), H2(Ω±)) with ∂tc
±
0 ∈ L2((0, T ), H1(Ω±)), and cM0 ∈

L2((0, T ), H2(Σ)) with ∂tc
M
0 ∈ L2((0, T ), H1(Σ)). Then, the following error estimate is

valid ∑
±

∥∥c±ε − c±ε,app,2

∥∥
L2((0,T ),H1(Ω±))

+
1√
ε

∥∥cMε − cMε,app,2

∥∥
L2((0,T ),H1(ΩMε ))

≤ C2ε,
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and the constant C2 = C2(c±0 , c
M
0 ) > 0 fulfills

C2 ≤C
(

1 + ‖cM0 ‖L2((0,T ),H2(Σ)) + ‖∂tcM0 ‖L2((0,T ),H1(Σ)) + ‖c0,M‖H1(Σ)

+
∑
±

[
‖c±0 ‖L2((0,T ),H2(Ω±)) + ‖∂tc±0 ‖L2((0,T ),H1(Ω±)) + ‖c0,±‖H1(Ω±)

])
.

We see that the second order approximation cε,app,2 leads to a better error estimate with
respect to the scaling parameter ε than cε,app,1. However, from the numerical point of view,
this has to be paid by solving the cell and boundary layer problems for the correctors cM2
and c±,bl

1 , see Section 5.

4 The zeroth order macroscopic model

In this section we formulate the macroscopic problem of zeroth order. This was derived
rigorously for a similar model in [10] using the method of two-scale convergence and the
unfolding operator. Here, we also take into account oscillations in the reactive term f±ε and
consider periodic boundary conditions on the lateral boundary instead of a Neumann-zero
boundary condition. However, the results from [10] still hold for our situation.

The macroscopic solution is defined in the following way: Let the triple (c+0 , c
M
0 , c−0 ) with

c±0 ∈ L2((0, T ), H1
#(Ω±)) ∩H1((0, T ), L2(Ω±)),

cM0 ∈ L2((0, T ), H1
#(Σ)) ∩H1((0, T ), L2(Σ)),

be the unique weak solution of the following transmission problem:

∂tc
±
0 −∇ ·

(
D±∇c±0

)
=

∫
Y n

f±(t, y, c±0 )dy in (0, T )× Ω±,

c+0 = c−0 = cM0 on (0, T )× Σ,

[[D±∇c±0 · ν]] = |Z|∂tcM0 − |Z|∇x̄ ·
(
DM,∗∇x̄cM0

)
−
∫
Z

gM (t, y, cM0 )dy on (0, T )× Σ,

−D±∇c±0 · ν± = 0 on (0, T )× Σ× {±H},
c±0 , c

M
0 are Σ-periodic,

c±0 (0) = c0,± in Ω±,

cM0 (0) = c0,M in Σ,

(7)

with [[D±∇c±0 ·ν]] := −
(
D+∇c+0 ·ν+ +D−∇c−0 ·ν−

)
. Here, ν± denotes the outer unit normal

on ∂Ω±, and the homogenized diffusion coefficient DM,∗ is defined by

DM,∗
kl :=

1

|Z|

∫
Z

DM (y)
(
∇wMk,1 + ek

)
·
(
∇wMl,1 + el

)
dy for k, l = 1, . . . , n− 1,

where wMk,1 are the solutions of the cell problems (9) in Section 5. The variational formulation

for Problem (7) is the following one: For all (φ+, φM , φ−) ∈ H1(Ω+) × H1(Σ) × H1(Ω−)
with φ±|Σ = φM it holds almost everywhere in (0, T )∑

±

[∫
Ω±

∂tc
±
0 φ
±dx+

∫
Ω±

D±∇c±0 · ∇φ±dx
]

+ |Z|
∫

Σ

∂tc
M
0 φMdx̄+ |Z|

∫
Σ

DM,∗∇x̄cM0 · ∇x̄φMdx̄

=

∫
Σ

∫
Z

gM (t, y, cM0 )φMdydx̄+
∑
±

∫
Ω±

∫
Y n

f±(t, y, c±0 )φ±dydx.

(8)

8



In the following we will prove regularity results for the macroscopic solution (c+0 , c
M
0 , c−0 )

under additional assumptions on the data. Hence, let the Assumptions (A1) - (A4) be valid
and additionally it holds that

(A2)’ The function f± is differentiable with respect to t with ∂tf
± ∈ L∞((0, T )× Y n ×R).

(A3)’ The function gM is differentiable with respect to t with ∂tg
M ∈ L∞((0, T )× Z × R).

(A4)’ There exists a constant M0 ≥ 0, such that ‖∇x̄c0,±‖L∞(Ω±) ≤ M0 (not for the n-th

derivative) and ‖∇x̄c0,M‖L∞(Σ) ≤M0.

Then we obtain the following regularity result for the macroscopic solution, which is
sufficient for the assumptions in Theorem 1 and 2 to hold:

Proposition 2. Let the conditions (A1) - (A4) be fulfilled. Then the triple (c+0 , c
M
0 , c−0 ) has

the following regularity property:

c±0 ∈ L2((0, T ), H2(Ω±)), cM0 ∈ L2((0, T ), H2(Σ)).

If we additionally assume (A2)’ - (A4)’, then we obtain

c±0 ∈ H1((0, T ), H1(Ω)), ∇x̄c±0 ∈ L∞((0, T )× Ω±),

cM0 ∈ H1((0, T ), H1(Σ)), ∇x̄cM0 ∈ L∞((0, T )× Σ).

Proof. The proof can be found in Section A in the Appendix.

Remark 3. We emphasize that the proofs of the main results from Section 3 hold under the
Assumptions (A1) - (A4), and the conditions stated in Theorem 1 and 2. The assumptions
(A2)’ - (A4)’ give sufficient conditions for which the assumptions from Theorem 1 and 2
are fulfilled, but are far away from being optimal.

5 Corrector terms

In this section we define the corrector terms c±,bl
1 , cM1 , and cM2 used in the first and sec-

ond order approximations cε,app,1 and cε,app,2 in Section 3, and investigate their regularity
properties. The correctors are defined via the derivatives of the macroscopic solution c0
multiplied by solutions of appropriate cell respectively boundary layer problems, see (9) -
(13).

Cell problems of first order for the thin layer ΩMε :
For j = 1, . . . , n− 1 the function wMj,1 ∈ H1

#(Z)/R solves the following cell problem:

−∇y ·
(
DM

[
∇ywMj,1 + ej

])
= 0 in Z,

−DM
[
∇ywMj,1 + ej

]
· ν = 0 on S±,

wMj,1 is Y n−1-periodic,

∫
Z

wMj,1dy = 0.

(9)

Lemma 1. For every j = 1, . . . , n − 1 there exists a unique solution wMj,1 ∈ W 2,p(Z) of
Problem (9) for p ∈ (1,∞) arbitrary large. Especially, we have

‖wMj,1‖C1(Z) ≤ C.

Proof. This follows from the Lp-theory for the Neumann-problem for elliptic equations, see
[15, Chapter 2]. The inequality follows from the Sobolev embedding theorem for p > n.

9



Now, we define the first order corrector cM1 in the thin layer via

cM1 (t, x̄, y) :=
n−1∑
j=1

∂xjc
M
0 (t, x̄)wMj,1(y) in (0, T )× Σ× Z. (10)

By adding εcM1
(
t, x̄, xε

)
to the macroscopic solution cM0 in the thin layer, we take into

account the oscillations in the layer and can prove error estimates for the gradients in L2,
see Theorem 1.

Boundary layer corrector for the bulk-domains Ω±:
Using the corrector cε,app,1, we obtain an error estimate of order ε

1
2 , see Theorem 1. To

obtain a better error estimate, we add further corrector terms to the approximation cε,app,1.

Firstly, we add the corrector c±,bl
1 to the macroscopic solution in the bulk domains, which

eliminates the discontinuity across the interfaces S±ε of the approximation cε,app,1.
Let us define the infinite stripes Y ± and their interface Y 0 by

Y + := Y n−1 × (0,∞),

Y − := Y n−1 × (−∞, 0),

Y 0 := Y n−1 × {0}.

For fixed ω > 0, we define

Wω,#

(
Y +
)

:=
{
u ∈ H1

#

(
Y n−1 × (0, R)

)
for every R > 0; eωyn∇u ∈ L2

(
Y +
)}
,

and in the same way we define the space Wω,#

(
Y −
)
. For j = 1, . . . , n − 1, the function

w±,bl
j,1 ∈Wω,#

(
Y ±
)

solves the following boundary layer problem

−∇y ·
(
D±∇w±,bl

j,1

)
= 0 in Y ±,

w±,bl
j,1 (ȳ, 0) = wMj,1(ȳ, 1) on Y 0,

w±,bl
j,1 is Y n−1-periodic,

∇w±,bl
j,1 decreases exponentially for yn → ±∞.

(11)

Lemma 2. For every j = 1, . . . , n − 1, there exists a unique solution w±,blj,1 ∈ Wω,#(Y ±)

for a suitable ω > 0. Additionally, it holds that w±,bl
j,1 ∈ W 2,p

loc (Rn±) ∩ C0
(
Rn±
)

with Rn± :=
{x ∈ Rn : ±xn > 0} for arbitrary large p ∈ (1,∞). Especially, we have for a constant C > 0∥∥w±,bl

j,1

∥∥
W 1,∞(Rn±)

≤ C.

Proof. The existence and uniqueness follows from [20, Theorem 10.1] and the regularity
result from Lemma 1. The local W 2,p-regularity follows from the Lp-theory for elliptic
equations, which also implies the continuity of the solution. It remains to check that the
solution and its gradient are bounded on Rn±. This follows from the weak maximum principle,
see [23, Theorem A.1.1] and also [12, Section 8.1]. More precisely we have

sup
y∈Y ±

∣∣∣w±,bl
j,1 (y)

∣∣∣ ≤ sup
y∈Y 0

∣∣∣w±,bl
j,1 (y)

∣∣∣ .
Now, the local estimate from [12, Theorem 9.11] which holds uniformly on every ball with
fixed radius in Rn and the Morrey inequality imply the boundedness of the gradient.

We define the first order corrector term c±,bl
1 for the bulk-domains Ω± by

c±,bl
1 (t, x, y) := ψ(xn)

n−1∑
j=1

∂xjc
±
0 (t, x)w±,bl

j,1 (y) in (0, T )× Ω± × Y ±. (12)
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Here, we take ψ ∈ C∞0 (−H,H) with 0 ≤ ψ ≤ 1 and ψ = 1 in a neighborhood of 0. Now, the

functions c±ε,app,2 = c±0 + εc±,bl
1

(
·, ·ε
)

and cMε,app,1 = cM0 + εcM1
(̄
·, ·ε
)

coincide on the interfaces
S±ε .

Corrector of second order for the thin layer ΩMε :

The corrector εc±,bl
1 leads to a jump of the normal fluxes across S±ε . Therefore, we add

an additional corrector of second order in the thin layer. We emphasize that due to the
different scaling of the diffusion coefficients in the bulk-domains and the thin layer in the
microscopic problem, we can expect correctors of different orders in the bulk domains and
the layer.

For j = 1, . . . , n− 1 the function wMj,2 ∈ H1
#(Z)/R solves the following cell problem:

−∇y ·
(
DM∇ywMj,2

)
= 0 in Z,

−DM∇ywMj,2 · ν = −D±∇yw±,bl
j,1 (ȳ, 0) · ν on S±,

wMj,2 is Y n−1-periodic,

∫
Z

wMj,2dy = 0.

(13)

Lemma 3. For j = 1, . . . , n− 1, there exists a unique solution wMj,2 ∈ W 2,p(Z) of Problem
(13) for arbitrary large p ∈ (1,∞). Especially, we have

‖wMj,2‖C1(Z) ≤ C.

Proof. Again, the claim follows from the Lp-theory for the elliptic equations with Neumann-
boundary conditions, and the regularity results from Lemma 2.

We define the second order corrector cM2 in the thin layer by

cM2 (t, x̄, y) :=
n−1∑
j=1

∂xjc
M
0 (t, x̄)wMj,2(y) in (0, T )× Σ× Z. (14)

6 Error estimates

In this section, we give the proof of our main results. Roughly speaking, the idea is to apply
the microscopic differential operator from Problem (1a) to the microscopic solution and the
approximative solution cε,app,j (j = 1, 2), and subtract these terms from each other. More
precisely, we start from the following term: For φ±ε ∈ C∞(Ω±) and φMε ∈ C∞(ΩMε ) with
φ±ε |Σ = φMε |S±ε we consider for j = 1, 2

∑
±

[∫
Ω±

∂t
(
c±ε − c±ε,app,j

)
φ±ε dx+

∫
Ω±

D±∇
(
c±ε − c±ε,app,j

)
· ∇φ±ε dx

]
+

1

ε

∫
ΩMε

∂t
(
cMε − cMε,app,j−1

)
φMε dx+

1

ε

∫
ΩMε

DM
(x
ε

)
∇
(
cMε − cMε,app,j

)
· ∇φMε dx

=:
∑
±

[
A±,1ε +A±,2ε

]
+AM,3

ε +AM,4
ε ,

(15)

where we use the short notation cMε,app,0 := cM0 . At this point, we do not give precise

information about the regularity of the macroscopic solution (c+0 , c
M
0 , c−0 ). This will be

specified in the following results. Our aim is to estimate the terms in (15) and to choose
a suitable test function. However, as mentioned in Remark 1 and 2, the error function
cε − cε,app,j is not an admissible test function. Therefore, we have to add an additional
corrector term in the bulk-domains, what leads to an additional error.
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We estimate the terms in (15) for j = 2, because the most error terms carry over to the
case j = 1. First of all, by using (12) we obtain

A±,2ε =

∫
Ω±

D±∇c±ε · ∇φ±ε −D±∇c±0 · ∇φ±ε − εD±∇
(
c±,bl
1

(
x,
x

ε

))
· ∇φ±ε dx

:=
3∑
j=1

B±,jε .

For the last term B±,3ε , an elemental calculation gives

B±,3ε = −ε
n−1∑
j=1

∫
Ω±

ψ(xn)w±,bl
j,1

(x
ε

)
D±∇∂xjc±0 · ∇φ±ε dx

− ε
n−1∑
j=1

∫
Ω±

ψ′(xn)∂xjc
±
0 w
±,bl
j,1

(x
ε

)
D±en · ∇φ±ε dx

−
n−1∑
i=1

n∑
k=1

∫
Ω±

ψ(xn)

 n∑
j=1

D±jk∂yjw
±,bl
i,1

(x
ε

) ∂xic
±
0 ∂xkφ

±
ε dx.

Let us define the tensor T±,bl : Y ± → Rn×(n−1) by

T±,bl
ki (y) := −

n∑
j=1

D±jk∂yjw
±,bl
i,1 (y) (16)

for k = 1, . . . , n and i = 1, . . . , n − 1. This gives us (we consider ∇x̄ as both, a vector in
Rn−1 and in Rn with the last component equal to zero)

A±,2ε =

∫
Ω±

D±∇c±ε · ∇φ±ε dx−
∫

Ω±
D±∇c±0 · ∇φ±ε dx

+

∫
Ω±

ψ(xn)T±,bl
(x
ε

)
∇x̄c±0 · ∇φ±ε dx

− ε
n−1∑
j=1

∫
Ω±

ψ(xn)D±∇∂xjc±0 · ∇φ±ε ψ(xn)w±,bl
j,1

(x
ε

)
dx

− ε
n−1∑
j=1

∫
Ω±

ψ′(xn)∂xjc
±
0 w
±,bl
j,1

(x
ε

)
D±en · ∇φ±ε dx.

With similar arguments and by adding DM,∗ in a suitable way, we obtain for AM,4
ε by using

(10) and (14) (if it is necessary, we consider DM,∗ as an element of Rn×n by setting the n-th
row and column equal to zero):

AM,4
ε =

1

ε

∫
ΩMε

DM
(x
ε

)
∇cMε · ∇φMε dx−

1

ε

∫
ΩMε

DM,∗∇x̄cM0 · ∇φMε dx

+
1

ε

∫
ΩMε

TM,1
(x
ε

)
∇x̄cM0 · ∇φMε dx

−
n−1∑
j=1

∫
ΩMε

DM
(x
ε

)
∇x̄∂xjcM0 · ∇φMε wMj,1

(x
ε

)
dx

+

∫
ΩMε

TM,2
(x
ε

)
∇x̄cM0 · ∇φMε dx

− ε
n−1∑
j=1

∫
ΩMε

DM
(x
ε

)
∇x̄∂xjcM0 · ∇φMε wMj,2

(x
ε

)
dx,
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with

TM,1 : Z → Rn×(n−1), (17)

TM,2 : Z → Rn×(n−1) (18)

defined for k ∈ {1, . . . , n} and i ∈ {1, . . . , n− 1} by

TM,1
ki (y) := DM,∗

ik −DM
ik (y)−

n∑
j=1

DM
jk (y)∂yjw

M
i,1(y),

TM,2
ki (y) := −

n∑
j=1

DM
jk (y)∂yjw

M
i,2(y).

Now, let us define the averaged function φ
M

ε ∈ H1(Σ) by

φ
M

ε (x̄) :=
1

2ε

∫ ε

−ε
φMε (x̄, xn)dxn.

We observe that with this definition we can write

1

ε

∫
ΩMε

∂tc
M
0 φMε dx+

1

ε

∫
ΩMε

DM,∗∇x̄cM0 · ∇φMε dx

= |Z|
∫

Σ

∂tc
M
0 φ

M

ε dx̄+ |Z|
∫

Σ

DM,∗∇x̄cM0 · ∇x̄φ
M

ε dx̄.

Altogether, we obtain for the term (15):∑
±

[
A±,1ε +A±,2ε

]
+AM,3

ε +AM,4
ε

=
∑
±

[∫
Ω±

∂tc
±
ε φ
±
ε dx+

∫
Ω±

D±∇c±ε · ∇φ±ε dx
]

+
1

ε

∫
ΩMε

∂tc
M
ε φ

M
ε dx+

1

ε

∫
ΩMε

DM
(x
ε

)
∇cMε · ∇φMε dx

−
∑
±

[∫
Ω±

∂tc
±
0 φ
±
ε dx+

∫
Ω±

D±∇c±0 · ∇φ±ε dx
]

− |Z|
∫

Σ

∂tc
M
0 φ

M

ε dx̄− |Z|
∫

Σ

DM,∗∇x̄cM0 · ∇x̄φ
M

ε dx̄

+ ∆ε,∂t + ∆ε,T + ∆ε,rest,

with

∆ε,∂t := −1

ε

∫
ΩMε

ε∂tc
M
1

(
x̄,
x

ε

)
φMε dx−

∑
±
ε

∫
Ω±

∂tc
±,bl
1

(
x,
x

ε

)
φ±ε dx,

∆ε,T :=
∑
±

[∫
Ω±

ψ(xn)T±,bl
(x
ε

)
∇c±0 · ∇φ±ε dx

]
+

1

ε

∫
ΩMε

TM,1
(x
ε

)
∇x̄cM0 · ∇φMε dx+

∫
ΩMε

TM,2
(x
ε

)
∇x̄cM0 · ∇φMε dx,

(19)

13



and

∆ε,rest :=− ε
∑
±

n−1∑
j=1

∫
Ω±

D±∇∂xjc±0 · ∇φ±ε ψ(xn)w±,bl
j,1

(x
ε

)
dx

− ε
∑
±

n−1∑
j=1

∫
Ω±

ψ′(xn)∂xjc
±
0 w
±,bl
j,1

(x
ε

)
D±en · ∇φ±ε dx

−
n−1∑
j=1

∫
ΩMε

DM
(x
ε

)
∇x̄∂xjcM0 · ∇φMε wMj,1

(x
ε

)
dx

− ε
n−1∑
j=1

∫
ΩMε

DM
(x
ε

)
∇x̄∂xjcM0 · ∇φMε wMj,2

(x
ε

)
dx.

We emphasize that (φ±ε , φ
M
ε ) is an admissible test function for the variational equation (4) of

the microscopic problem, but (φ±ε , φ
M

ε ) is not an admissible test function for the variational
equation (8) of the macroscopic model of zeroth order. Therefore, in the following we use

equation (7) tested with
(
φ±ε , φ

M

ε

)
. Due to the regularity of c±0 from Proposition 2, the

normal fluxes are elements of L2(Σ). Hence, from (4) and (7) we obtain∑
±

[
A±,1ε +A±,2ε

]
+AM,3

ε +AM,4
ε

=
∑
±

[∫
Ω±

f±ε (c±ε )φ±ε dx−
∫

Ω±

∫
Y n

f±(t, y, c±0 )φ±ε dydx

]
+

1

ε

∫
ΩMε

gMε (cMε )φMε dx−
∫

Σ

∫
Z

gM (t, y, cM0 )φ
M

ε dydx̄

+
∑
±

∫
Σ

D±∇c±0 · ν±
(
φ±ε − φ

M

ε

)
dσ + ∆ε,∂t + ∆ε,T + ∆ε,rest.

(20)

We have to estimate the terms on the right-hand side, where the most challenging term is
∆ε,T . We start with ∆ε,∂t , which only occurs for j = 2.

Lemma 4 (Estimate for ∆ε,∂t). For c±0 ∈ H1((0, T ), H1(Ω)±)) and cM0 ∈ H1((0, T ), H1(Σ)),
for almost every t ∈ (0, T ) it holds that

∆ε,∂t ≤ C
(√
ε‖∂tcM0 ‖H1(Σ)‖φMε ‖L2(ΩMε ) + ε‖∂tc±0 ‖H1(Ω±)‖φ±ε ‖L2(Ω±)

)
.

Proof. The estimate follows easily from the Hölder-inequality and the essential boundedness
of w±,bl

j,1 and wMj,1, see Lemma 1 and 2.

Remark 4. Here we use the additional regularity for the time derivative of the macroscopic
solution from the hypothesis in Theorem 2.

Lemma 5 (Estimate for ∆ε,rest). For c±0 ∈ L2((0, T ), H2(Ω±)) and cM0 ∈ L2((0, T ), H2(Σ)),
for almost every t ∈ (0, T ) it holds that

∆ε,rest ≤ C

(
√
ε‖cM0 ‖H2(Σ)

∥∥∇φMε ∥∥L2(ΩMε )
+ ε
∑
±
‖c±0 ‖H2(Ω±)

∥∥∇φ±ε ∥∥L2(Ω±)

)
.

Proof. The claim follows easily from the continuity of DM and the regularity results from
Lemma 1, 2 and 3.

Lemma 6 (Estimate for the interface term in (20)). Let c±0 ∈ L2((0, T ), H2(Ω±)). Then
almost everywhere in (0, T ) it holds that∫

Σ

D±∇c±0 · ν±
(
φ±ε − φ

M

ε

)
dσ ≤ C

√
ε‖c±0 ‖H2(Ω±)

∥∥∇φMε ∥∥L2(ΩMε )
.
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Proof. The fundamental theorem of calculus and φ±ε |Σ = φMε |S±ε imply∥∥φ±ε |Σ − φMε ∥∥L2(Σ)
≤ C
√
ε‖∂nφMε ‖L2(ΩMε ) ≤ C

√
ε
∥∥∇φMε ∥∥L2(ΩMε )

.

Now, the regularity of c±0 implies∫
Σ

D±∇c±0 · ν±
(
φ±ε − φ

M

ε

)
dσ ≤ C

∥∥∇c±0 · ν±∥∥L2(Σ)

∥∥φ±ε |Σ − φMε ∥∥L2(Σ)

≤ C
√
ε‖c±0 ‖H2(Ω±)

∥∥∇φMε ∥∥L2(ΩMε )
.

Estimates for the nonlinear terms in (20):
Let us estimate now the differences including the nonlinear terms in (20). We start with

the following auxiliary Lemma:

Lemma 7. Let cM0 ∈ L2((0, T ), H1(Σ)) and let us define η ∈ L2((0, T )× Σ, L∞(Z)) by

η(t, x̄, y) := gM
(
t, y, cM0 (x̄)

)
− 1

|Z|

∫
Z

gM
(
t, z, cM0 (x̄)

)
dz.

There exists G ∈ L2((0, T ), H1
#(Σ,W 1,p(Z))) for p ∈ (1,∞) arbitrary large, such that

∇y ·G = η in (0, T )× Σ× Z,
G · ν = 0 on (0, T )× Σ× S±.

Especially, the following estimate holds:

‖G‖
L2
(

(0,T ),H1
(

Σ,C0
(
Z
))) ≤ C (1 + ‖cM0 ‖L2((0,T ),H1(Σ))

)
.

Proof. Here, the time variable has the role of an additional parameter and for an easier
notation we suppress the time-dependence in the following.

Step 1 (Existence of a solution G ∈ H1(Σ,W 1,p(Z))): First of all, the function η is an

element of L2(Σ, L∞(Z)), since we obtain from the growth condition from Assumption (A3)

‖η‖L2(Σ,L∞(Z)) ≤ C
(
1 + ‖cM0 ‖L2(Σ)

)
.

Further, the mean value with respect to y is obviously zero. Additionally, the regularity of
gM implies

∂xiη(x̄, y) = ∂zg
M
(
y, cM0 (x̄)

)
∂xic

M
0 (x̄)− 1

|Z|

∫
Z

∂zg
M (z, cM0 (x̄))∂xic

M
0 (x̄)dz

for i = 1, . . . , n − 1 and almost every (x̄, y) ∈ Σ × Z. Since the derivative of a Lipschitz-
function is bounded (independent of y, due to our assumptions), we obtain∥∥∂xiη∥∥L∞(Z,L2(Σ))

≤ C‖cM0 ‖H1(Σ),

i. e., η ∈ L∞(Z,H1(Σ)). Now, let ξ ∈ L2(Σ, H1
#(Z)/R) be the unique solution of the

following problem:

−∆yξ(x̄, y) = η(x̄, y) in Σ× Z,
−∇yξ(x̄, y) · ν = 0 on Σ× S±,

ξ is Y n−1-periodic and

∫
Z

ξdy = 0.
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The Lp-theory for elliptic equations implies ξ ∈ L2(Σ,W 2,p(Z)) for p ∈ (1,∞) arbitrary,
and

‖ξ‖L2(Σ,W 2,p(Z)) ≤ C‖η‖L2(Σ,Lp(Z)) ≤ C
(
1 + ‖cM0 ‖L2(Σ)

)
.

To prove regularity of ξ with respect to x̄, we use the method of difference quotients, see
[12, Section 7.11]. We define for ψ ∈ L2(Σ×Z), i ∈ {1, . . . , n− 1}, and h > 0 the difference
quotient by

∂ihψ(x̄, y) :=
ψ(x̄+ hei, y)− ψ(x̄, y)

h
for (x̄, y) ∈ Σh × Z,

with Σh := {x̄ ∈ Σ : dist(x̄, ∂Σ) > h}. Then, ∂ihξ is a solution of

−∆y∂
i
hξ(x̄, y) = ∂ihη(x̄, y) in Σh × Z,

−∇y∂ihξ(x̄, y) · ν = 0 on Σh × S±,

∂ihξ is Y n−1-periodic and

∫
Z

∂ihξdy = 0.

By the same arguments as above we obtain ∂ihξ ∈ L2(Σh,W
2,p(Z)) and

‖∂ihξ‖L2(Σh,W 2,p(Z)) ≤ C‖∂ihη‖L2(Σh,Lp(Z)) ≤ C‖∂xiη‖L2(Σ,Lp(Z)) ≤ C‖cM0 ‖H1(Σ).

The results from [12, Section 7.11] extended to Banach valued functions implies ξ ∈ H1(Σ,W 2,p(Z)).
Especially, we can replace ∂ihξ in the problem above by ∂xiξ.

Now, we define G(x̄, y) := −∇yξ(x̄, y). This gives us the desired result for G, where the
estimate follows from the continuous embedding W 1,p(Z) ↪→ C0

(
Z
)
.

Step 2 (Periodicity of G with respect to x̄): We define the space of L2-functions on Z with

mean value zero by L2
0(Z) :=

{
u ∈ L2(Z) :

∫
Z
udy = 0

}
. Further, let ω = Σ or ω = ∂Σ,

and we define the linear operator

Lω : L2(ω,L2
0(Z))→ L2(ω,H1

#(Z)/R), Lω(θ) = ξ,

where ξ is the unique weak solution of

−∆yξ(x̄, y) = θ(x̄, y) in ω × Z,
−∇yξ(x̄, y) · ν = 0 on ω × S±,

ξ is Y n−1-periodic and

∫
Z

ξdy = 0.

Existence and uniqueness follows as in Step 1 from the Lax-Milgram Lemma, which also
implies the continuity of the operator Lω. We consider the following vector-valued trace
operators (see [2, Theorem 6.13])

TL2
0(Z) : H1(Σ, L2

0(Z))→ L2(∂Σ, L2
0(Z)),

TH#(Z)/R : H1(Σ, H1
#(Z)/R)→ L2(∂Σ, H1

#(Z)/R).

The claim is proved, if we show

TH#(Z)/R ◦ LΣ = L∂Σ ◦ TL2
0(Z) on H1(Σ, L2

0(Z)). (21)

With similar arguments as in Step 1, we obtain the regularity result

Lω
(
C0(ω,L2

0(Z))
)
⊂ C0(ω,H#(Z)/R),

hence, the identity (21) holds on C0(Σ, L2
0(Z)). The density of C0(Σ, L2

0(Z)) and the con-
tinuity of Lω and the trace operators imply the desired result.
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Proposition 3. Let cM0 ∈ L2((0, T ), H1(Σ)). Then it holds that

1

ε

∫
ΩMε

gMε (cMε )φMε dx−
∫

Σ

∫
Z

gM (t, y, cM0 )φ
M

ε dydx̄

≤ C

ε

∥∥cMε − cM0 ∥∥L2(ΩMε )
‖φMε ‖L2(ΩMε ) + C

√
ε
(
1 + ‖cM0 ‖H1(Σ)

)
‖φMε ‖H1(ΩMε ).

Proof. We have

1

ε

∫
ΩMε

gM
(x
ε
, cMε

)
φMε dx−

∫
Σ

∫
Z

gM (y, cM0 )φ
M

ε dydx̄

=
1

ε

∫
ΩMε

[
gM
(x
ε
, cMε

)
− gM

(x
ε
, cM0

)]
φMε dx

+
1

ε

∫
ΩMε

[
gM
(x
ε
, cM0

)
− 1

|Z|

∫
Z

gM
(
y, cM0

)
dy

]
φMε dx =: G1

ε +G2
ε .

For the first term G1
ε we use the uniform Lipschitz continuity of gM to obtain

G1
ε ≤

C

ε

∥∥cMε − cM0 ∥∥L2(ΩMε )
‖φMε ‖L2(ΩMε ).

For the second term G2
ε we use Lemma 7 to obtain

G2
ε =

1

ε

∫
ΩMε

η
(
x̄,
x

ε

)
φMε dx =

1

ε

∫
ΩMε

∇y ·G
(
x̄,
x

ε

)
φMε dx

=

∫
ΩMε

[
−
(
∇x̄ ·G

) (
x̄,
x

ε

)
+∇x ·

(
G
(
x̄,
x

ε

))]
φMε dx

=−
∫

ΩMε

(
∇x̄ ·G

) (
x̄,
x

ε

)
φMε dx−

∫
ΩMε

G
(
x̄,
x

ε

)
· ∇φMε dx

+

∫
∂ΩMε

G
(
x̄,
x

ε

)
· νφMε dσ =: F 1

ε + F 2
ε + F 3

ε .

The last term F 3
ε vanishes, due to the periodicity of G and G · ν = 0 on S+ ∪ S−. Further,

the estimate from Lemma 7 implies

F 2
ε ≤

∥∥∥G(x̄, x
ε

)∥∥∥
L2(ΩMε )

∥∥∇φMε ∥∥L2(ΩMε )
≤ C
√
ε‖G‖L2(Σ,C0(Z))

∥∥∇φMε ∥∥L2(ΩMε )

≤ C
√
ε
(
1 +

∥∥cM0 ∥∥H1(Σ)

)∥∥∇φMε ∥∥L2(ΩMε )
.

In a similar way, we can estimate F 1
ε .

Proposition 4. Let c±0 ∈ L2((0, T ), H1(Ω±)). Then it holds that∫
Ω±
f±ε (c±ε )φ±ε dx−

∫
Ω±

∫
Y n

f±(y, c±0 )φ±ε dydx

≤ C
∥∥c±ε − c±0 ∥∥L2(Ω±)

‖φ±ε ‖L2(Ω±) + Cε
(
1 + ‖c±0 ‖H1(Ω±)

)
‖φ±ε ‖H1(Ω±).

Proof. We argue in the same way as in the proof of Proposition 3. We have∫
Ω±
f±ε (c±ε )φ±ε dx−

∫
Ω±

∫
Y n

f±(y, c±0 )φ±ε dydx

=

∫
Ω±

[
f±
(x
ε
, c±ε

)
− f±

(x
ε
, c±0

)]
φ±ε dx

+

∫
Ω±

[
f±
(x
ε
, cM0

)
−
∫
Y n

f±(y, c±0 )dy

]
φ±ε dx

≤ C
∥∥c±ε − c±0 ∥∥L2(Ω±)

‖φ±ε ‖L2(Ω±) +

∫
Ω±
∇y · F±

(
x,
x

ε

)
φ±ε dx,
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where F ∈ H1(Ω±,W 1,p(Z)) for arbitrary large p ∈ (1,∞) fulfills (we again suppress the
time-dependence)

∇y · F±(x, y) = f±(y, c±0 )−
∫
Y n

f±(z, c±0 )dz in Ω± × Y n,

and the estimate

‖F±‖H1(Ω±,C0(Y n)) ≤ C
(
1 + ‖c±0 ‖H1(Ω±)

)
.

The existence and the regularity of F± can be established in the same way as in Lemma
7. However, we emphasize that we do not require specific boundary conditions for F± on
∂Ω±. We obtain∫

Ω±
∇y · F±

(
x,
x

ε

)
φ±ε dx = −ε

∫
Ω±

(∇x · F±)
(
x,
x

ε

)
φ±ε dx− ε

∫
Ω±

F±
(
x,
x

ε

)
· ∇φ±ε dx

+ ε

∫
∂Ω±

F±
(
x,
x

ε

)
· νφ±ε dσ.

We only consider the boundary term in more detail. The vector valued trace inequality
implies

ε

∫
∂Ω±

F±
(
x,
x

ε

)
· νφ±ε dσ ≤ ε‖F±‖L2(∂Ω±,C0(Y n))‖φ

±
ε ‖L2(∂Ω±)

≤ Cε
(
1 + ‖c±0 ‖H1(Ω±)

)
‖φ±ε ‖H1(Ω±)

Estimate for ∆ε,T

Now, we estimate the term ∆ε,T , where according to (19) we use the following notations
for the included terms:

∆ε,T =:
∑
±

[
∆ε,T±,bl

]
+ ∆ε,TM,1 + ∆ε,TM,2 .

The mean idea is to represent solenoidal vector fields by the divergence of skew-symmetric
matrices and integrate by parts. This gives an additional factor ε. This approach has been
used in [18, Section 4.2] for vector fields on Y n, periodic in all directions, and [24] for
boundary layers. In our case, we have to construct skew-symmetric matrices adapted to
the structure of our problem. More precisely, these matrices have to be such that boundary
terms which occur at the interfaces between the bulk domains and the thin layer vanish.

We start with the estimate for the term ∆ε,TM,1 . Therefore, we make use of the following
Lemma:

Lemma 8. Let h = (h1, . . . , hn) ∈ Lp(Z)n for 1 < p <∞ with

∇y · h = 0 in Z,

h · ν = 0 on S+ ∪ S−,

h is Y n−1-periodic,

∫
Z

hdy = 0.

This means, that for all φ ∈ W 1,p′(Z) which are Y n−1-periodic (p′ the dual exponent of p)
it holds that ∫

Z

h · ∇yφdy = 0.
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Then, there exists a skew-symmetric tensor
(
βil
)
∈W 1,p(Z)n×n for i, l = 1, . . . n, such that

n∑
l=1

∂ylβil = hi in Z,

n∑
l=1

νlβil = 0 on S+ ∪ S−.

Proof. We define

βil := ∂ylζi − ∂yiζl,

where ζi is the solution of

∆ζi = hi in Z,

∇ζi · ν = 0 on S+ ∪ S− for i = 1, . . . , n− 1,

ζn = 0 on S+ ∪ S−,
ζi is Y n−1-periodic for i = 1, . . . , n,∫

Z

ζidy = 0 for i = 1, . . . , n− 1.

From the Lp-theory for elliptic equations we obtain ζi ∈ W 2,p(Z) and therefore βil ∈
W 1,p(Z). Obviously, the boundary conditions for ζi on S+∪S− imply

∑n
l=1 νlβil = βin = 0.

Further, we have

n∑
l=1

∂ylβil = ∆ζi −
n∑
l=1

∂yiylζl = hi − ∂yi∇y · ζ,

where we defined ζ := (ζ1, . . . , ζn). We show that v := ∇y · ζ = 0. First of all, we have v is
Y n−1-periodic and ∫

Z

vdy =

∫
∂Z

ζ · νdσ =

∫
S+∪S−

ζnνndσ = 0,

due to the zero-boundary condition of ζn on S+ ∪ S−. Further, for all Y n−1-periodic
φ ∈ C∞

(
Z
)

we have∫
Z

∇v · ∇φdy =

n∑
i=1

∫
Z

∂yi
(
∇ζi · ∇φ

)
−∇ζi · ∇(∂yiφ)dy

=

n∑
i=1

∫
∂Z

νi∇ζi · ∇φdσ −
n∑
i=1

∫
Z

∇ζi · ∇(∂yiφ)dy

=
n∑

i,j=1

∫
∂Z

νi∂yjζi∂yjφdσ +
n∑
i=1

∫
Z

∆ζi∂yiφdy −
n∑

i,j=1

∫
∂Z

νj∂yjζi∂yiφdσ

=: I1 + I2 − I3.

For the second term we obtain from the properties of h and the definition of ζi

I2 =

∫
Z

h · ∇φdy = 0.

Further, the periodicity and the Dirichlet-zero boundary condition of ζn imply

I1 =
n∑

i,j=1

∫
S+∪S−

νi∂yjζi∂yjφdσ =
n∑
j=1

∫
S+∪S−

νn∂yjζn∂yjφdσ

=

∫
S+∪S−

νn∂ynζn∂ynφdσ.
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Using the Neumann-boundary conditions for ζi for i = 1, . . . , n − 1, we get by similar
arguments

I3 =

n∑
i=1

∫
S+∪S−

νn∂ynζi∂yiφdσ =

∫
S+∪S−

νn∂ynζn∂ynφdσ = I1.

Altogether, we obtain ∫
Z

∇v · ∇φdy = 0,

and therefore v satisfies

−∆v = 0 in Z,

−∇v · ν = 0 on S+ ∪ S−,

v is Y n−1-periodic and

∫
Z

vdy = 0.

This implies v = 0 and the proof is complete.

Lemma 9. Let cM0 ∈ L2((0, T ), H2(Σ)). Then it holds that

∆ε,TM,1 ≤ C
√
ε‖cM0 ‖H2(Σ)‖∇φMε ‖L2(ΩMε ).

Proof. We have

∆ε,TM,1 =
1

ε

n−1∑
i=1

n∑
j=1

∫
ΩMε

TM,1
ji

(x
ε

)
∂xic

M
0 ∂xjφ

M
ε dx.

Let us define for fixed i ∈ {1, . . . , n− 1} the function h = (h1, . . . , hn) by hj(y) := TM,1
ji (y).

An elemental calculation shows that h fulfills the assumptions of Lemma 8. Hence, there
exists for every i ∈ {1, . . . , n− 1} a skew symmetric tensor

(
βijl
)
∈W 1,p(Z) (for p ∈ (1,∞)

arbitrary large), such that
∑n
l=1 ∂ylβ

i
jl = TM,1

ji in Z and βijn = 0 on S+ ∪ S−. This implies
by integration by parts

∆ε,TM,1 =
1

ε

n−1∑
i=1

n∑
j,l=1

∫
ΩMε

∂ylβ
i
jl

(x
ε

)
∂xic

M
0 ∂xjφ

M
ε dx

= −
n−1∑
i=1

n∑
j,l=1

∫
ΩMε

βijl

(x
ε

) [
∂xlxic

M
0 ∂xjφ

M
ε + ∂xic

M
0 ∂xlxjφ

M
ε

]
dx

+
n−1∑
i=1

n∑
j,l=1

∫
∂ΩMε

βijl

(x
ε

)
νl∂xic

M
0 ∂xjφ

M
ε dσ.

The boundary term vanishes due to the boundary conditions of cM0 and φMε on the lateral
boundary, and the boundary condition of βijn on S+ ∪ S−. The terms including the deriva-

tives ∂xlxjφ
M
ε vanish due to the skew-symmetry of βijl and the symmetry of the Hesse-matrix

of φMε . Then, the regularity of βijl implies

∆ε,TM,1 = −
n−1∑
i=1

n∑
j,l=1

∫
ΩMε

βijl

(x
ε

)
∂xlxic

M
0 ∂xjφ

M
ε dx ≤ C

√
ε‖cM0 ‖H2(Σ)‖∇φMε ‖L2(ΩMε ).
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It remains to estimate the term
∑
±∆ε,T±,bl + ∆ε,TM,2 . First of all we define for −∞ <

a < b <∞

ω(a, b) := (0, 1)n−1 × (a, b),

and the space

V :=
{
u ∈ L2

loc(Z∞) : ∇u ∈ L2(Z∞), u is Y n−1-periodic
}
,

where L2
loc(Z∞) denotes the space of functions belonging to L2(U) for every U ⊂ Z∞ such

that U is compact. In a similar way we define other Sobolev spaces which are integrable
locally on Z∞. For u ∈ V we define the mean value of u over Y n−1 × {s} for s ∈ R by

ū(s) :=

∫
Y n−1

u(ȳ, s)dȳ.

On V we have the following weighted Poincaré-type inequality (see [16, Prop. 1.3])∥∥∥∥ 1

1 + |yn|
(
u− ū(0)

)∥∥∥∥
L2(Z∞)

≤ C‖∇u‖L2(Z∞). (22)

Therefore, the space

V0 := {u ∈ V : ū(0) = 0}

becomes a Hilbert space with respect to the inner product

(u, v)V0
:=

∫
Z∞

∇u · ∇vdy.

Lemma 10. Let (1 + |yn|)hi ∈ L2(Z∞) with
∫
Z∞

hidy = 0 for i = 1, . . . , n. Then there
exists a unique weak solution u ∈ V0 of the problem

−∆u = hi in Z∞,

ū(0) = 0 and u is Y n−1-periodic.
(23)

Proof. The proof is based on the inequality (22) and can be found in [16, Prop. 1.5].

Next we show additional regularity results for the solution u from Lemma 10 under
additional assumptions on hi. We use similar methods as in [16, 26]. However, for the sake
of completeness we give the detailed proof for our case.

Lemma 11. For γ > 0 let eγ|yn|hi ∈ L2(Z∞),
∫
Z∞

hidy = 0, and hi ∈ Lploc(Z∞) for p > n
such that for every s ∈ R it holds that

‖hi‖Lp(ω(s,s+1)) ≤ C, (24)

with a constant C > 0 independent of s. Then the solution u from Lemma 10 fulfills
u ∈ L2

loc(Z∞) with ‖u‖L2(ω(s,s+1)) ≤ C uniformly with respect to s. Especially we have

u ∈W 2,p
loc (Z∞) and u ∈ C1(Z∞).

Proof. The Lp-theory of elliptic operators implies u ∈ W 2,p
loc (Z∞). Now, we prove (Y + =

Y n−1 × (0,∞))

∂nū(0) =

∫
Y +

hidy.

In fact, let s > 0 and φs ∈ C∞(R) with 0 ≤ φs ≤ 1, φs = 0 in [s+ 1,∞), φ = 1 in (−∞, s),
and ‖φ′‖∞ ≤ 2. Then by testing (23) with φs and integrating over Y +, we obtain

−∂nū(0) =

∫
ω(s,s+1)

∂nuφ
′
sdy −

∫
Y +

hiφsdy
s→∞−→ −

∫
Y +

hidy,
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since ∇u ∈ L2(Z∞). Using again the equation −∆u = hi, we get for ξ > 0

∂nū(ξ) = −∂nū(0) +

∫
ω(0,ξ)

hidy = −
∫
ω(ξ,∞)

hidy.

Integration with respect to ξ from 0 to s > 0 implies (ū(0) = 0)

|ū(s)| =

∣∣∣∣∣
∫ s

0

∫
ω(ξ,∞)

hidydξ

∣∣∣∣∣ ≤
∫ s

0

∥∥eγξhi∥∥L2(ω(ξ,∞))

∥∥e−γξ∥∥
L2(ω(ξ,∞))

dξ

≤ C
∥∥eγynhi∥∥L2(Z∞)

for a constant C > 0 independent of s. Now, the Poincaré-inequality implies for every s ≥ 0

‖u‖L2(ω(s,s+1)) ≤ ‖u− ū(s)‖L2(ω(s,s+1)) + |ū(s)|

≤ C
(
‖∇u‖L2(Z∞) +

∥∥eγynhi∥∥L2(Z∞)

)
.

The same arguments hold for s < 0, what implies u ∈ L2
loc(Z∞). The claim follows from

Theorem 8.17, 9.11, and 8.32 from [12].

Now we are able to construct the skew-symmetric tensors corresponding to the error
terms ∆ε,T±,bl and ∆ε,TM,2 .

Lemma 12. For γ > 0 let eγynh ∈ L2(Z∞)n and h ∈ Lploc(Z∞)n for p > n such that (24)
holds for all s ∈ R, and

∇ · h = 0 in Z∞,

h is Y n−1-periodic and

∫
Z∞

hdy = 0.

More precisely, the conditions ∇ · h = 0 and h is Y n−1-periodic means that for all φ ∈
C∞0,#(Z∞) it holds that ∫

Z∞

h · ∇φdy = 0.

Then there exists a Y n−1-periodic, skew symmetric tensor
(
βkl
)
∈ L2(Z∞) ∩W 1,p

loc (Z∞) ∩
C0(Z∞), such that

n∑
l=1

∂lβkl = hk in Z∞. (25)

Proof. From Lemma 10 we obtain the existence of a function ζk such that ∆ζk = hk in
Z∞. Now, we define βkl := ∂lζk − ∂kζl for l, k = 1, . . . , n. The regularity of βkl follows
immediately from Lemma 11 and we only have to check the claim that (25) holds. The
definition of βkl implies (as in the proof of Lemma 8)

n∑
l=1

∂lβkl = ∆ζk − ∂k(∇ · ζ) = hk − ∂kv,

with ζ := (ζ1, . . . , ζn) and v := ∇ · ζ. Then, (25) follows if we show ∇v = 0.
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First of all, for R > 0 we define ZR := Y n−1 × (−R,R) and ψ ∈ C∞0 (−R,R) with
0 ≤ ψ ≤ 1, ψ = 1 in [−R+ 1, R− 1], and ||ψ′||∞ ≤ 2. For every φ ∈ C∞0,#(Z∞) we obtain∫

ZR

ψ(yn)∇v · ∇φdy =
n∑
i=1

∫
ZR

ψ(yn)
(
∂i
(
∇ζi · ∇φ

)
−∇ζi · ∇

(
∂iφ
))
dy

=
n∑
i=1

[
−
∫
ZR

δinψ
′(yn)∇ζi · ∇φdy +

∫
∂ZR

ψ(yn)∇ζi · ∇φνidσ

+

∫
ZR

ψ(yn)∆ζi∂iφdy −
∫
∂ZR

ψ(yn)∇ζi · ν∂iφdy

+

∫
ZR

ψ′(yn)en · ∇ζi∂iφdy
]

The boundary terms vanish, due to the periodicity of ζi and φ, as well as the compact
support of ψ in (−R,R). Using ∆ζi = hi and ∇ · h = 0, we get∫

ZR

ψ(yn)∇v · ∇φdy = −
∫
ZR

ψ′(yn)
(
∇ζn · ∇φ+ hnφ

)
dy

+

∫
ZR

h · ∇
(
φ · ψ

)
dy +

n∑
i=1

∫
ZR

ψ′(yn)en · ∇ζi∂iφdy

=

∫
ZR

ψ′(yn)

(
n∑
i=1

∂nζi∂iφ−∇ζn · ∇φ− hiφ

)
dy =: AR(φ).

By a density argument this result is also valid for φ = v, and we obtain for R → ∞ from
the monotone convergence theorem:∥∥∇v∥∥2

L2(Z∞)
= lim
R→∞

AR(v).

It remains to show AR(v)→ 0 for R→∞. We illustrate this for one term in AR(v). From
the Hölder-inequality we obtain∣∣∣∣∫

ZR

ψ′(yn)hivdy

∣∣∣∣ =

∣∣∣∣∣
∫
ZR\ZR−1

ψ′(yn)hivdy

∣∣∣∣∣
≤ C‖hi‖L2(ZR\ZR−1)‖v‖L2(ZR\ZR−1)

R→∞−→ 0.

This proves the claim.

Lemma 13. Let cM0 ∈ L2((0, T ), H2(Σ)) and c±0 ∈ L2((0, T ), H2(Ω±)). Then it holds that

∆ε,TM,2 +
∑
±

∆ε,T±,bl ≤ C
(√

ε‖cM0 ‖H2(Σ)

∥∥∇φMε ∥∥L2(ΩMε )
+ ε
∑
±
‖c±0 ‖H2(Ω±)

∥∥∇φ±ε ∥∥L2(Ω±)

)
Proof. We proceed in a similar way as in Lemma 9, whereby we now use Lemma 12. Here,
the crucial point is to control the boundary terms on Σ, which occur by replacing TM,2 and
T±,bl by skew-symmetric tensors and integrating by parts. We handle this by constructing
skew-symmetric tensors which are continuous across S±.

First of all, we fix i ∈ {1, . . . , n− 1} and define for j = 1, . . . , n

hj(y) :=


h+
j (y) := T+,bl

ji (y − en) for y ∈ Y + + en,

hMj (y) := TM,2
ji (y) for y ∈ Z,

h−j (y) := T−,bl
ji (y + en) for y ∈ Y − − en.

We show that h fulfills the conditions of Lemma 12 except the mean value condition. The
properties of ∇w±,bl

i,1 (see Lemma 2) imply the integrability conditions on h = (h1, . . . , hn)
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from Lemma 12 (remember that we can choose p arbitrary large, especially p > n). Further,
according to (13), we have ∇ · hM = 0 in Z and by (11) we have ∇ · h± = 0 in Y ±. The
Neumann-boundary condition of wMi,2 on S± implies hM · ν = h± · ν on S±, where ν denotes
the outer unit normal on ∂Z with respect to Z. Hence, we obtain ∇ · h = 0 on Z∞. Now
we show, that hn fulfills the mean value condition:

For every a, b ∈ R with a < b and c ∈ R it holds that∫
Y n−1

∫ b

a

hndy =

∫
Y n−1

∫ b

a

h · ∇(yn + c)dy

= b

∫
Y n−1

hn(ȳ, b)dȳ − a
∫
Y n−1

hn(ȳ, a)dȳ

+ c

(∫
Y n−1

hn(ȳ, b)dȳ −
∫
Y n−1

hn(ȳ, a)dȳ

)
.

We emphasize that the trace of hn exists, due to the regularity of w±,bl
i,1 and wMi,2. Since

c ∈ R is arbitrary, we obtain∫
Y n−1

hn(ȳ, a)dȳ =

∫
Y n−1

hn(ȳ, b)dȳ.

Let us check that this term is equal to zero. Let R > 1 (the case R < −1 follows the
same lines) and φ ∈ C∞0,#(ω(R − 1, R + 1)) with 0 ≤ φ ≤ 1, ‖∇φ‖∞ ≤ 2, and φ = 1 in an

neighborhood of Y n−1 × {R}. From the exponential decay of h we immediately obtain∫
ω(R−1,R)

h · ∇φdy R→∞−→ 0.

Since h is divergence-free, we obtain∫
Y n−1

hn(ȳ, R)dȳ =

∫
ω(R−1,R)

h · ∇φdy R→∞−→ 0.

This implies
∫
Y n−1 hn(ȳ, a)dȳ = 0 for all a ∈ R. Especially, we obtain

∫
Z∞

hndy = 0.

For arbitrary H ∈ Rn−1 × {0} we define h̃ by h̃M := hM + H in Z and h̃± := h± in
Y ± ∓ en. Then, for h̃ we still have ∇ · h̃ = 0 in Z∞ and h̃ fulfills the same integrability
conditions as h. We choose H in such a way that

∫
Z∞

h̃jdy = 0 for j = 1, . . . , n − 1.

Then, Lemma 12 implies the existence of a skew-symmetric tensor
(
βijl
)
∈ W 1,p

1,#(Z∞) with∑n
l=1 ∂lβ

i
jl = h̃j .

Now, we consider the error terms ∆ε,TM,2 and ∆ε,T±,bl . We have

∆ε,TM,2 =
n−1∑
i=1

n∑
k,l=1

∫
ΩMε

∂ylβ
i
kl

(x
ε

)
∂xic

M
0 ∂xkφ

M
ε dx−

n−1∑
i,k=1

Hk

∫
ΩMε

∂xic
M
0 ∂xkφ

M
ε dx

=: Aε +Bε.

For the second term we immediately obtain from the Hölder-inequality

Bε ≤ C
√
ε‖cM0 ‖H1(Σ)

∥∥∇φMε ∥∥L2(ΩMε )
.
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For the first term Aε we obtain by integration by parts

Aε = ε
n−1∑
i=1

n∑
k,l=1

∫
ΩMε

∂xlβ
i
kl

(x
ε

)
∂xic

M
0 ∂xkφ

M
ε dx

= −ε
n−1∑
i=1

n∑
k,l=1

∫
ΩMε

βikl

(x
ε

) [
∂xlxic

M
0 ∂xkφ

M
ε + ∂xic

M
0 ∂xkxlφ

M
ε

]
dx

+ ε
n−1∑
i=1

n∑
k,l=1

∫
∂ΩMε

βikl

(x
ε

)
νl∂xic

M
0 ∂xkφ

M
ε dσ

= −ε
n−1∑
i=1

n∑
k,l=1

∫
ΩMε

βikl

(x
ε

)
∂xlxic

M
0 ∂xkφ

M
ε dx

+
∑
±

n−1∑
i=1

n∑
k=1

∫
S±ε

±βikn
(x
ε

)
∂xic

M
0 ∂xkφ

M
ε dx,

where the lateral boundary terms of ∂ΩMε vanish, due to the Σ-periodicity of the functions,
and the terms involving ∂xkxlφ

M
ε vanish, due to the skew-symmetry of βikl. With similar

arguments, we obtain

∆ε,T±,bl =
∑
±

n−1∑
i=1

n∑
k,l=1

∫
Ω±

ψ(xn)∂ylβ
i
kl

(x
ε
± en

)
∂xic

±
0 ∂xkφ

±
ε dx

= −ε
∑
±

n−1∑
i=1

n∑
k,l=1

∫
Ω±

βikl

(x
ε
± en

) [
∂xlxic

±
0 ψ(xn) + δlnψ

′(xn)∂xic
±
0

]
∂xkφ

±
ε dx

+ ε
∑
±

n−1∑
i=1

n∑
k=1

∫
Σ

∓βikn
(x
ε
± en

)
∂xic

±
0 ∂xkφ

±
ε dσ.

Adding up these terms, the boundary terms cancel out and we obtain

∆ε,TM,2 +
∑
±

∆ε,T±,bl = Bε − ε
n−1∑
i=1

n∑
k,l=1

∫
ΩMε

βikl

(x
ε

)
∂xlxic

M
0 ∂xkφ

M
ε dx

− ε
∑
±

n−1∑
i=1

n∑
k,l=1

∫
Ω±

βikl

(x
ε
± en

) [
∂xlxic

±
0 ψ(xn) + δlnψ

′(xn)∂xic
±
0

]
∂xkφ

±
ε dx.

Now, using the essential boundedness of βikl from Lemma 12, we obtain the desired result.

We summarize our results in the following proposition:

Proposition 5. For c±0 ∈ L2((0, T ), H2(Ω±)) with ∂tc
±
0 ∈ H1((0, T ), H1(Ω±)) and cM0 ∈

L2((0, T ), H2(Σ)) with ∂tc
M
0 ∈ H1((0, T ), H1(Σ)) the following estimate is valid for all
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φ±ε ∈ H1(Ω±) and φMε ∈ H1(ΩMε ) with φ±ε |Σ = φMε |S±ε :

∑
±

[∫
Ω±

∂t
(
c±ε − c±ε,app,2

)
φ±ε dx+

∫
Ω±

D±∇
(
c±ε − c±ε,app,2

)
· ∇φ±ε dx

]
+

1

ε

∫
ΩMε

∂t
(
cMε − cMε,app,1

)
φMε dx+

1

ε

∫
ΩMε

DM
(x
ε

)
∇
(
cMε − cMε,app,2

)
· ∇φMε dx

≤ C
∑
±

[
‖c±ε − c±0 ‖L2(Ω±)‖φ±ε ‖L2(Ω±) + ε

(
1 + ‖∂tc±0 ‖H1(Σ) + ‖c±0 ‖H2(Ω±)

)
‖φ±ε ‖H1(Ω±)

]
+
C

ε
‖cMε − cM0 ‖L2(ΩMε )‖φMε ‖L2(ΩMε )

+ C
√
ε‖φMε ‖H1(ΩMε )

(
1 + ‖∂tcM0 ‖H1(Σ) + ‖cM0 ‖H2(Σ) +

∑
±
‖c±0 ‖H2(Ω±)

)
.

(26)

Proof. For smooth functions φ±ε and φMε the result follows directly from (15) and (20),
Proposition 3 and 4, and Lemma 4, 5, 9, 13, and 6. Then, the result for functions φ±ε ∈
H1(Ω±) and φMε ∈ H1(ΩMε ) follows by a density argument.

6.1 Error estimates for the first order approximation

In this subsection, we give the proof of Theorem 1, i. e., we proof the estimate for the error
cε − cε,app,1. We start from equation (15) with j = 1 and use the same methods as for
equation (20). Then for all φ±ε ∈ H1(Ω±) and φMε ∈ H1(ΩMε ) with φ±ε |Σ = φMε |S±ε , we get

∑
±

[∫
Ω±

∂t
(
c±ε − c±0

)
φ±ε dx+

∫
Ω±

D±∇
(
c±ε − c±ε,app,1

)
· ∇φ±ε dx

]
+

1

ε

∫
ΩMε

∂t
(
cMε − cM0

)
φMε dx+

1

ε

∫
ΩMε

DM
(x
ε

)
∇
(
cMε − cMε,app,1

)
· ∇φMε dx

=
∑
±

[∫
Ω±

f±ε (c±ε )φ±ε dx−
∫

Ω±

∫
Y n

f±(t, y, c±0 )φ±ε dydx

]
+

1

ε

∫
ΩMε

gMε (cMε )φMε dx−
∫

Σ

∫
Z

gM (t, y, cM0 )φ
M

ε dydx̄

+
∑
±

∫
Σ

D±∇c±0 · ν±
(
φ±ε − φ

M

ε

)
dσ + ∆ε,TM,1 + ∆ε,rest,1

=: ∆ε,1.

(27)

with

∆ε,rest,1 := −
n−1∑
j=1

∫
ΩMε

DM
(x
ε

)
∇x̄∂xjcM0 · ∇φMε wMj,1

(x
ε

)
dx.

Lemma 14. Let c±0 ∈ L2((0, T ), H2(Ω±)), then for the first order corrector c±,bl
1 in the

bulk-domains it holds that∥∥∥c±,bl
1

(
·, ·
ε

)∥∥∥
L2(Ω±)

+ ε
∥∥∥∇c±,bl

1

(
·, ·
ε

)∥∥∥
L2(Ω±)

≤ C‖c±0 ‖H2(Ω±).

Especially, we have

‖c±ε − c±ε,app,2‖L2((0,T ),H1(Ω±)) ≤ C
(
1 + ‖c±0 ‖L2((0,T ),H2(Ω±))

)
with c±ε,app,2 = c±0 + εc±,bl

1

(
·, ·ε
)
.
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For cM0 ∈ L2((0, T ), H2(Σ)), the first order corrector cM1 in the thin layer fulfills

1√
ε

∥∥∥cM1 (̄
·, ·
ε

)∥∥∥
L2(ΩMε )

+
√
ε
∥∥∥∇cM1 (̄

·, ·
ε

)∥∥∥
L2(ΩMε )

≤ C‖cM0 ‖H2(Σ).

Especially, we have

‖cMε − cMε,app,1‖L2((0,T ),H1(ΩMε )) ≤ C
√
ε
(
1 + ‖cM0 ‖L2((0,T ),H2(Σ))

)
,

with cMε,app,1 = cM0 + εcM1
(̄
·, ·ε
)
.

Proof. These estimates easily follow from the regularity results for w±,bl
j,1 and wMj,1 in Lemma

11 and 9, and the a priori estimates in Proposition 1.

Theorem 3. Let c±0 ∈ L2((0, T ), H2(Ω±)) with ∂tc
±
0 ∈ L2((0, T ), L2(Ω±)) and ∇c±0 ∈

L∞((0, T ) × Ω±), and cM0 ∈ L2((0, T ), H2(Σ)) with ∂tc
M
0 ∈ L2((0, T ), L2(Σ)). Then, the

following error estimate is valid∑
±

[
‖c±ε − c±0 ‖L∞((0,T ),L2(Ω±)) +

∥∥∇(c±ε − c±0 )
∥∥
L2((0,T ),L2(Ω±))

]
+

1√
ε
‖cMε − cM0 ‖L∞((0,T ),L2(ΩMε )) +

1√
ε

∥∥∇(cMε − cMε,app,1)
∥∥
L2((0,T ),L2(ΩMε ))

≤ C
√
ε

(
1 + ‖cM0 ‖L2((0,T ),H2(Σ)) + ‖∂tcM0 ‖L2((0,T ),L2(Σ))

+
∑
±

[
‖c±0 ‖L2((0,T ),H2(Ω±)) + ‖∂tc±0 ‖L2((0,T ),L2(Ω±)) +

∥∥∇c±0 ∥∥L∞((0,T )×Ω±)

])
.

Proof. We already mentioned that cε − cε,app,1 is not an admissible test function for (15),
hence, we add the corrector term εc±1

(
x, xε

)
in the bulk-domains to obtain the admissible

test function

φ±ε (x) := c±ε − c±ε,app,2 = c±ε − c±0 − εc
±,bl
1

(
x,
x

ε

)
in Ω±,

φMε (x) := cMε − cMε,app,1 = cMε − cM0 − εcM1
(
x̄,
x

ε

)
in ΩMε .

We use this test function in the equation (27) and obtain∑
±

[
1

2

d

dt
‖c±ε − c±0 ‖2L2(Ω±) +

∫
Ω±

D±∇(c±ε − c±0 ) · ∇(c±ε − c±0 )dx

]
+

1

2ε

d

dt
‖cMε − cM0 ‖2L2(ΩMε ) +

1

ε

∫
ΩMε

DM
(x
ε

)
∇(cMε − cMε,app,1) · ∇(cMε − cMε,app,1)dx

=∆ε,1 +
1

ε

∫
ΩMε

∂t(c
M
ε − cM0 )εcM1

(
x̄,
x

ε

)
dx

+
∑
±

[∫
Ω±

∂t(c
±
ε − c±0 )εc±,bl

1

(
x,
x

ε

)
dx+ ε

∫
Ω±

D±∇(c±ε − c±0 ) · ∇c±,bl
1

(
x,
x

ε

)
dx

]
= : ∆ε,1 + Cε +

∑
±

[
A±ε +B±ε

]
.

Using the coercivity of D± and DM , we get for a constant c0 > 0∑
±

[
1

2

d

dt
‖c±ε − c±0 ‖2L2(Ω±) + c0

∥∥∇(c±ε − c±0 )
∥∥2

L2(Ω±)

]
+

1

2ε

d

dt
‖cMε − cM0 ‖2L2(ΩMε ) +

c0
ε

∥∥∇(cMε − cMε,app,1)
∥∥2

L2(ΩMε )

≤ ∆ε,1 + Cε +
∑
±

[
A±ε +B±ε

]
.

(28)

27



From Proposition 3 and 4, and Lemma 5, 6, and 9 we obtain

∆ε,1 ≤C
∑
±

[
‖c±ε − c±0 ‖L2(Ω±)‖c±ε − c±ε,app,2‖L2(Ω±)

+ ε
(
1 + ‖c±0 ‖H1(Ω±)

)
‖c±ε − c±ε,app,2‖H1(Ω±)

]
+
C

ε
‖cMε − cM0 ‖L2(ΩMε )‖cMε − cMε,app,1‖L2(ΩMε )

+ C
√
ε

(
1 + ‖cM0 ‖H2(Σ) +

∑
±
‖c±0 ‖H2(Ω±)

)
‖cMε − cMε,app,1‖H1(ΩMε )

≤C
∑
±

[[
‖c±ε − c±0 ‖2L2(Ω±) + ε2

∥∥∥c±,bl
1

(
·, ·
ε

)∥∥∥2

L2(Ω±)

+ ε
(
1 + ‖c±0 ‖H1(Ω±)

)∥∥c±ε − c±ε,app,2‖H1(Ω±)

)
+
C

ε

∥∥cMε − cM0 ∥∥2

L2(ΩMε )
+ ε
∥∥∥cM1 (̄

·, ·
ε

)∥∥∥2

L2(ΩMε )

+ C
√
ε

(
1 + ‖cM0 ‖H2(Σ) +

∑
±
‖c±0 ‖H2(Ω±)

)
‖cMε − cMε,app,1‖H1(ΩMε ).

Integration with respect to time and Lemma 14 yields for almost every t ∈ (0, T )∫ t

0

∆ε,1dt ≤
C

ε

∥∥cMε − cM0 ∥∥2

L2((0,t)×ΩMε )
+ C

∑
±

∥∥c±ε − c±0 ∥∥2

L2((0,t)×Ω±)

+ ε

(
1 + ‖cM0 ‖2L2((0,T ),H2(Σ)) +

∑
±
‖c±0 ‖2L2((0,T ),H2(Ω±))

)
.

For A±ε and Cε, we immediately obtain from the Hölder-inequality

A±ε ≤ Cε‖∂t(c±ε − c±0 )‖L2(Ω±)‖c±0 ‖H1(Ω±),

Cε ≤ C
√
ε‖∂t(cMε − cM0 )‖L2(ΩMε )‖cM0 ‖H1(Σ).

For B±ε we obtain

B±ε = ε
n−1∑
j=1

∫
Ω±

D±∇
(
c±ε − c±0 ) ·

[
ψw±,bl

j,1

(x
ε

)
∇∂xjc±0

+ enψ
′∂xjc

±
0 w
±,bl
j,1

(x
ε

)
+

1

ε
ψ∂xjc

±
0 ∇yw

±,bl
j,1

(x
ε

)]
dx

≤ Cε
∥∥∇(c±ε − c±0 )‖L2(Ω±)‖c±0 ‖H2(Ω±)

+ C

n−1∑
j=1

∥∥∇(c±ε − c±0 )
∥∥
L2(Ω±)

∥∥∥∇yw±,bl
j,1

( ·
ε

)∥∥∥
L2(Ω±)

∥∥∇x̄c±0 ∥∥L∞(Ω±)

By a change of variables and the Y n−1-periodicity of w±,bl
j,1 , we obtain∥∥∥∇yw+,bl

j,1

( ·
ε

)∥∥∥2

L2(Ω+)
≤ C

∫
Y n−1×(0,H)

∣∣∣∇yw+,bl
j,1

(
ȳ,
xn
ε

)∣∣∣2 dȳdxn
≤ Cε

∫
Y +

∣∣∣∇yw+,bl
j,1 (y)

∣∣∣2 dy ≤ Cε.
The term including ∇yw−,bl

j,1 can be estimated in the same way. Now, for every θ > 0 there

exists a constant C(θ) > 0, such that for all a, b ≥ 0 it holds that ab ≤ C(θ)a2 + θb2. This
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implies

B±ε ≤ C(θ)ε
(∥∥∇c±0 ∥∥L∞(Ω±)

+ ‖c±0 ‖2H2(Ω±)

)
+ θ
∥∥∇(c±ε − c±0 )

∥∥2

L2(Ω±)
.

For θ < c0, the last term on the right-hand side can be absorbed from the left-hand side in
(28). Integration of (28) with respect to time, Gronwall-inequality, and Lemma 14 imply∑
±

[
‖c±ε − c±0 ‖2L∞((0,T ),L2(Ω±)) +

∥∥∇(c±ε − c±0 )
∥∥2

L2((0,T ),L2(Ω±))

]
+

1

ε
‖cMε − cM0 ‖2L∞((0,T ),L2(ΩMε )) +

1

ε

∥∥∇(cMε − cMε,app,1)
∥∥2

L2((0,T ),L2(ΩMε ))

≤ Cε
∑
±

[
‖∂t(c±ε − c±0 )‖L2((0,T ),L2(Ω±))‖c±0 ‖L2((0,T ),H1(Ω±))

]
+ C
√
ε‖∂t(cMε − cM0 )‖L2((0,T ),L2(ΩMε ))‖cM0 ‖L2((0,T ),H1(Σ))

+ Cε

(
1 + ‖cM0 ‖2L2((0,T ),H2(Σ)) +

∑
±

[
‖c±0 ‖2L2((0,T ),H2(Ω±)) +

∥∥∇c±0 ∥∥L∞((0,T )×Ω±)

])

+
1

ε

∥∥c0,Mε − c0,M
∥∥2

L2(Σ)
+
∑
±

∥∥c0,±ε − c0,±
∥∥2

L2(Ω±)
.

The a priori estimates from Proposition 1 and Assumption (A4) imply the desired result.

As a direct consequence, we obtain Theorem 1:

Proof of Theorem 1. This follows directly from Theorem 3 and Lemma 14.

6.2 Error estimates for the second order approximation

As in the case of the first order approximation, we have the problem that cε− cε,app,2 is not
an admissible test function, because it is not continuous across S±ε (after a shift back to the
domain Ωε). We have to add a corrector c±2

(
x, xε

)
to the bulk-approximation c±ε,app,2 with

c±2
(
x, xε

)∣∣
Σ

= cM2
(
x̄, xε

)∣∣
S±ε

. Therefore, we define

w±j,2(y) := ψ(yn)wMj,2(ȳ,±1),

i. e., we extend the trace of wMj,2 on S± constant to the infinite strip Y ± and multiply it by

the cut-off function ψ, which was defined in Section 5. The regularity of wMj,2 and the trace

embedding from [32, Remark 4, Section 2.9.1] imply w±j,2 ∈ W
2− 1

p ,p

# (Y ±), and the Hölder-

embedding [32, Theorem 4.6.1(e)] implies that w±j,2 and ∇yw±j,2 are essential bounded, i. e.,
we have

‖w±j,2‖W 1,∞(Y ±) ≤ C.

Now, we define

c±2 (x, y) :=

n−1∑
j=1

∂xjc
±
0 (x)w±j,2(y) in Ω± × Y ±.

Lemma 15. Let c±0 ∈ L2((0, T ), H2(Ω±)) with ∂tc
±
0 ∈ L2((0, T ), H1(Ω±)). Then, for the

correctors c±,bl
1

(
·, ·ε
)

and c±2
(
·, ·ε
)

in the bulk-domains it holds that∥∥∥c±2 (·, ·ε)∥∥∥L2(Ω±)
+ ε
∥∥∥∇c±2 (·, ·ε)∥∥∥L2(Ω±)

≤ C‖c±0 ‖H2(Ω±),∥∥∥∂tc±,bl
1

(
·, ·
ε

)∥∥∥
L2(Ω±)

≤ C‖∂tc±0 ‖H1(Ω±).
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For cM0 ∈ L2((0, T ), H2(Σ)) with ∂tc
M
0 ∈ L2((0, T ), H1(Σ)), the correctors cM1

(̄
·, ·ε
)

and

cM2
(̄
·, ·ε
)

in the thin layer fulfill the following inequalities

1√
ε

∥∥∥cM2 (̄
·, ·
ε

)∥∥∥
L2(ΩMε )

+
√
ε
∥∥∥∇cM2 (̄

·, ·
ε

)∥∥∥
L2(ΩMε )

≤ C‖cM0 ‖H2(Σ),∥∥∥∂tcM1 (̄
·, ·
ε

)∥∥∥
L2(ΩMε )

≤ C
√
ε‖∂tcM0 ‖H1(Σ).

Proof. We only give the proof for ∇c±2
(
·, ·ε
)
. From the essential boundedness of w±j,2 and

∇yw±j,2, we immediately obtain

∥∥∥∇c±2 (·, ·ε)∥∥∥L2(Ω±)
≤
n−1∑
j=1

∥∥∥∥∇∂xjc±0 w±j,2 ( ·ε)+
1

ε
∂xjc

±
0 ∇yw

±
j,2

( ·
ε

)∥∥∥∥
L2(Ω±)

≤ C

ε
‖c±0 ‖H2(Ω±).

Theorem 4. Let c±0 ∈ L2((0, T ), H2(Ω±)) with ∂tc
±
0 ∈ L2((0, T ), H1(Ω±)) and cM0 ∈

L2((0, T ), H2(Σ)) with ∂tc
M
0 ∈ L2((0, T ), H1(Σ)). Then, the following error estimate is

valid ∑
±

[
‖c±ε − c±ε,app,2‖L∞((0,T ),L2(Ω±)) +

∥∥∇(c±ε − c±ε,app,2)
∥∥
L2((0,T ),L2(Ω±))

]
+

1√
ε
‖cMε − cMε,app,1‖L∞((0,T ),L2(ΩMε )) +

1√
ε

∥∥∇(cMε − cMε,app,2)
∥∥
L2((0,T ),L2(ΩMε ))

≤ Cε
(

1 + ‖cM0 ‖L2((0,T ),H2(Σ)) + ‖∂tcM0 ‖L2((0,T ),H1(Σ)) + ‖c0,M‖H1(Σ)

+
∑
±

[
‖c±0 ‖L2((0,T ),H2(Ω±)) + ‖∂tc±0 ‖L2((0,T ),H1(Ω±)) + ‖c0,±‖H1(Ω±)

])
.

Proof. We start from the inequality (26) from Proposition 5 and choose as a test function

φ±ε :=c±ε − c±ε,app,3 = c±ε − c±ε,app,2 − ε2c
±
2

(
·, ·
ε

)
in Ω±,

φMε :=cMε − cMε,app,2 in ΩMε .

Let us denote by ∆ε,2 the terms on the right-hand side in the inequality (26). Then, the
coercivity of DM and D± implies for a constant c0 > 0 after integration with respect to
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time that for almost every t ∈ (0, T ) it holds that∑
±

[
1

2
‖c±ε − c±ε,app,2‖2L2(Ω±) + c0

∥∥∇(c±ε − c±ε,app,2

∥∥2

L2((0,t)×Ω±)

]
+

1

2ε
‖cMε − cMε,app,1‖2L2(ΩMε ) +

c0
ε

∥∥∇(cMε − cMε,app,2)
∥∥2

L2((0,t)×ΩMε )

≤
∫ t

0

∆ε,2dt+
1

2ε
‖cMε (0)− cMε,app,1(0)‖2L2(ΩMε ) +

∑
±

[
1

2
‖c±ε (0)− c±ε,app,2(0)‖2L2(Ω±)

]

+
1

ε

∫ t

0

∫
ΩMε

∂t(c
M
ε − cMε,app,1)ε2cM2

(
x̄,
x

ε

)
dxdt

+
∑
±

[ ∫ t

0

∫
Ω±

∂t(c
±
ε − c±ε,app,2)ε2c±2

(
x,
x

ε

)
dxdt

+ ε2
∫ t

0

∫
Ω±

D±∇(c±ε − c±ε,app,2) · ∇c±2
(
x,
x

ε

)
dxdt

]
= : ∆ε,2,t + ∆ε,0 + Cε +

∑
±

[
A±ε +B±ε

]
.

(29)

Here, ∆ε,0 includes all terms containing initial values. Let us estimate the terms on the
right-hand side. Some elemental calculations and the estimates from Proposition 1 and
Lemma 14 and 15 give us (we emphasize that these equations are valid pointwise in time)

‖c±ε − c±0 ‖L2(Ω±)‖c±ε − c±ε,app,3‖L2(Ω±) ≤ C‖c±ε − c±ε,app,2‖2L2(Ω±)

+ Cε2
(

1 + ‖c±0 ‖2H1(Ω±)

)
,

1

ε
‖cMε − cM0 ‖L2(ΩMε )‖cMε − cMε,app,2‖L2(ΩMε ) ≤

C

ε
‖cMε − cMε,app,1‖2L2(ΩMε )

+ Cε2
(

1 + ‖cM0 ‖2L2(Σ)

)
,

‖c±ε − c±ε,app,3‖H1(Ω±) ≤ ‖c±ε − c±ε,app,2‖H1(Ω±) + Cε‖c±0 ‖H1(Ω±),

1√
ε
‖cMε − cMε,app,2‖H1(ΩMε ) ≤

1√
ε
‖cMε − cMε,app,1‖H1(ΩMε ) + Cε‖cM0 ‖H2(Σ).

These estimates imply (together with the inequality ab ≤ C(θ)a2 + θb2) almost everywhere
in (0, T )

∆ε,2 ≤C
∑
±

[
‖c±ε − c±ε,app,2‖2L2(Ω±) + ε2

(
1 + ‖∂tc±0 ‖H1(Ω±) + ‖c±0 ‖2H1(Ω±)

)]
+
c0
4

∑
±

[∥∥∇(c±ε − c±ε,app,2)
∥∥2

L2(Ω±)

]
+
C

ε
‖cMε − cMε,app,1‖2L2(ΩMε )

+ Cε2
(

1 + ‖∂tcM0 ‖2H1(Σ) + ‖cM0 ‖2H2(Σ)

)
+
c0
4ε

∥∥∇(cMε − cMε,app,2

∥∥2

L2(ΩMε )
.

Using again Proposition 1 and Lemma 14 and 15, we obtain for almost every t ∈ (0, T )

A±ε ≤ Cε2
(

1 + ‖∂tc±0 ‖2L2((0,t),H1(Ω±)) + ‖c±0 ‖L2((0,t),H2(Ω±))

)
,

B±ε ≤ Cε2‖c±0 ‖2L2((0,t),H2(Ω±)) +
c0
4

∥∥∇(c±ε − c±ε,app,2)
∥∥2

L2((0,t)×Ω±)
,

Cε ≤ Cε2
(

1 + ‖∂tcM0 ‖2H1(Σ) + ‖cM0 ‖2L2((0,t),H2(Σ))

)
.

It remains to estimate the initial term ∆ε,0. Assumption (A4) and (A4)’, the regularity of

31



c±0 and cM0 , Lemma 14, and the essential boundedness of w±,bl
j,1 and wMj,1 imply

∆ε,0 ≤
C

ε

(∥∥c0,Mε − c0,M
∥∥2

L2(ΩMε )
+ ε2

∥∥∥cM1 (
0, x̄,

x

ε

)∥∥∥2

L2(ΩMε )

)
+
∑
±

(∥∥c0,±ε − c0,±
∥∥2

L2(Ω±)
+ ε2

∥∥∥c±1 (0, x,
x

ε

)∥∥∥2

L2(Ω±)

)
≤Cε2

(
1 + ‖c0,M‖2H1(Σ) + ‖c0,±‖2H1(Ω±)

)
.

Plugging in these estimates in (29), we obtain the desired result.

As an immediate consequence we obtain Theorem 2.

Proof of Theorem 2. This is a direct consequence of Theorem 4 and Proposition 1.

Remark 5.

(i) Our results are not restricted to the Assumptions (A2) - (A4), and (A2)’ - (A4)’.
In fact, the error estimates from Theorem 1 and 2 remain valid, if the microscopic
solution fulfills the a priori estimates from Proposition 1, the nonlinear functions fulfill
the estimates from Proposition 3 and 4, the initial values fulfill the error estimate (2),
and the macroscopic solution fulfills the regularity hypothesis from Theorem 1 and 2.

(ii) Theorem 3 and therefore Theorem 1 still hold if we replace the condition (2) in As-
sumption (A4) by the weaker condition∥∥c0,±ε − c0,±

∥∥
L2(Ω±)

+
1√
ε

∥∥c0,Mε − c0,M
∥∥
L2(ΩMε )

≤ C
√
ε.

This can be easily seen from the last inequality in the proof of Theorem 3. In this case
the error for the second order approximation is also of order ε

1
2 , i. e., no better error

estimate is obtained by using the improved approximation cε,app,2.

A Regularity proofs for the macroscopic solution

In this section, we give the proof of the regularity results in Proposition 2 without going
into detail. We shortly write:

V ± := L∞((0, T ), L2(Ω±)) ∩ L2((0, T ), H1(Ω±)),

VM := L∞((0, T ), L2(Σ)) ∩ L2((0, T ), H1(Σ)),

and

‖u±‖V ± := ‖u‖L∞((0,T ),L2(Ω±)) + ‖u±‖L2((0,T ),H1(Ω±)),

‖uM‖VM := ‖uM‖L∞((0,T ),L2(Σ)) + ‖uM‖L2((0,T ),H1(Σ)).

Further we define for M ∈ R and t ∈ (0, T ), and given u± ∈ V ± and uM ∈ VM the sets

Ω±M (t) := {x ∈ Ω± : u±(t, x) > M}, ΣM (t) := {x ∈ Σ : uM (t, x) > M}.

The following technical lemma is an extension of [19, Chapter II, Theorem 6.1] for our
geometrical setting:
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Lemma 16. Let u± ∈ V ±, uM ∈ VM , M̂ ≥ 0, and assume that there exist C > 0 and
κ > 0, such that for all M ≥ M̂ it holds that

‖(uM −M)+‖VM +
∑
±
‖(u± −M)+‖V ±

≤ CM

(∫ T

0

|ΣM (t)|
r
q dt+

∑
±

∫ T

0

|Ω±M (t)|
r
q dt

) 1+κ
r

for r ∈ [2,∞] and q ∈
[
2, 2n

n−2

]
(here 1

0 =∞ for n = 2). Then, we have

u± ∈ L∞((0, T )× Ω±), uM ∈ L∞((0, T )× Σ).

Proof. The proof can easily be adapted from [19, II, Theorem 6.1] and is skipped here.

Proof of Proposition 2. First of all, we obtain c±0 ∈ L2((0, T ), H2(Ω±)) and cM0 ∈ L2((0, T ), H2(Σ))
by testing (4) with the difference quotient of (∇c+0 ,∇x̄cM0 ,∇c−0 ) with respect to the spatial
variable for the i-th component with i = 1, . . . , n − 1 (c0 can be extended periodically to
Rn−1 × (−H,H)). For more details, we refer to [10, Lemma 2.4].

The regularity c±0 ∈ H1((0, T ), H1(Ω±)) and cM0 ∈ H1((0, T ), H1(Σ)) is formally ob-
tained by differentiating the problem (7) with respect to time. Rigorously, this can be done
by a priori estimates for a Galerkin approximation. For more details we refer to [9]. Here,
we make use of the differentiability of f± and gM with respect to t from the additional
assumptions (A2)’ and (A3)’, as well as the essential boundedness of ∇x̄c0,M and ∇x̄c0,±
from (A4)’.

It remains to check the essential boundedness of ∇x̄c±0 and ∇x̄cM0 . Formally this can be
done by differentiating the equation (7) with respect to xi for i = 1, . . . , n − 1. Let us do
this in a more rigorous way, where the ideas can be found in [19]. As test functions in (4),
we choose ∂xiφ

± and ∂xiφ
M with φ ∈ C∞# (Ω) and φ± = φ|Ω± and φM = φ|Σ. Then, by

integration by parts we obtain with the periodic boundary conditions on the lateral boundary
and the regularity results from above the following weak formulation for v±i := ∂xic

±
0 and

vMi := ∂xic
M
0∑
±

[∫
Ω±

∂tv
±
i φ
±dx+

∫
Ω±

D±∇v±i ∇φ
±dx

]
+ |Z|

∫
Σ

∂tv
M
i φ

Mdx̄+ |Z|
∫

Σ

DM,∗∇x̄vMi ∇x̄φMdx̄

=

∫
Σ

∫
Z

∂zg
M (cM0 )vMi φ

Mdydx̄+
∑
±

∫
Ω±

∫
Y n

∂zf
±(c±0 )v±i φ

±dydx,

together with the initial condition v±i (0) = ∂xic
0,± and vMi (0) = ∂xic

0,M (this is exactly the
weak formulation we obtain by formally differentiating (7) with respect to xi). By density,
see [10, Lemma 5.3], this equation is valid for all φ ∈ H1(Ω) with φ|Σ ∈ H1(Σ). For M ≥M0

(see (A4)’), we choose φ± := (v±i −M)+ and φM := (vMi −M)+ with (·)+ := max{0, ·}
and obtain by an elemental calculation using the essential boundedness of ∂zf

± and ∂zg
M

(which follows from the uniform Lipschitz continuity with respect to Z), the estimate (for a
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constant c0 > 0)∑
±

[
1

2

d

dt

∥∥(v±i −M)+

∥∥2

L2(Ω±)
+ c0

∥∥∇(v±i −M)+

∥∥2

L2(Ω±)

]
+

1

2

d

dt

∥∥(vMi −M)+

∥∥2

L2(Σ)
+ c0

∥∥∇x̄(vMi −M)+

∥∥2

L2(Σ)

≤C

[∥∥(vMi −M)+

∥∥2

L2(Σ)
+
∑
±

∥∥(v±i −M)+

∥∥2

L2(Ω±)

]

+ CM

∫
Σ

(vMi −M)+dx̄+ CM
∑
±

∫
Ω±

(v±i −M)+dx.

Integration with respect to time, the condition (A4)’, and the Gronwall inequality imply∥∥(vMi −M)+

∥∥
VM

+
∑
±

∥∥(v±i −M)+

∥∥
V ±

≤ CM

(∫ T

0

|ΣM (t)|dt+
∑
±

∫ T

0

|Ω±M (t)|dt

) 1
2

.

An application of Lemma 16 with r = q = 2n+2
n and κ = 2

n gives the desired result.
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de la paroi. J. Math. pures et appl., 66:1–43, 1987.

[8] C. Conca. Étude d’un fluid traversant une paroi perforeé II. Comportement limite loin
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[19] O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural’ceva. Linear and Quasi-linear
Equations of Parabolic Type, volume 23. Transl. Math. Mono., 1968.

[20] J. L. Lions. Some methods in the mathematical analysis of system and their control.
Gorden and Breach, 1981.
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