
UHasselt Computational Mathematics Preprint

Series

A linear domain decomposition

method for partially saturated flow

in porous media

David Seus, Koondanibha Mitra, Iuliu Sorin Pop,

Florin Adrian Radu and Christian Rohde

UHasselt Computational Mathematics Preprint

Nr. UP-17-08

August 10th, 2017



A linear domain decomposition method for partially saturated flow in
porous media

David Seusa,∗, Koondanibha Mitrab,c, Iuliu Sorin Popc,d, Florin Adrian Radud, Christian Rohdea

a Institute of Applied Analysis and Numerical Simulation, Chair of Applied Mathematics, Pfaffenwaldring 57, 70569 Stuttgart,
Germany

bDepartment of Mathematics and Computer Science, Technische Universiteit Eindhoven, PO Box 513, 5600 MB Eindhoven, The
Netherlands

c Faculty of Sciences, Hasselt University, Campus Diepenbeek, Agoralaan Building D, BE3590 Diepenbeek, Belgium
d Department of Mathematics, University of Bergen, P. O. Box 7800, N-5020 Bergen, Norway

Abstract

The Richards equation is a nonlinear parabolic equation that is commonly used for modelling satu-

rated/unsaturated flow in porous media. We assume that the medium occupies a bounded Lipschitz

domain partitioned into two disjoint subdomains separated by a fixed interface Γ. This leads to two

problems defined on the subdomains which are coupled through conditions expressing flux and pressure

continuity at Γ. After an Euler implicit discretisation of the resulting nonlinear subproblems a linear

iterative (L-type) domain decomposition scheme is proposed. The convergence of the scheme is proved

rigorously. In the last part we present numerical results that are in line with the theoretical finding, in par-

ticular the unconditional convergence of the scheme. We further compare the scheme to other approaches

not making use of a domain decomposition. Namely, we compare to a Newton and a Picard scheme. We

show that the proposed scheme is more stable than the Newton scheme while remaining comparable in

computational time, even if no parallelisation is being adopted. Finally we present a parametric study that

can be used to optimize the proposed scheme.

Keywords: Domain decomposition, L-scheme Linearisation, Richards Equation

1. Introduction

Unsaturated flow processes through porous media appear in a variety of physical situations and ap-

plications. Notable examples are soil remediation, enhanced oil recovery, CO2 storage, harvesting of

geothermal energy, or the design of filters and fuel cells. Mathematical modelling and numerical simula-

tion are essential for understanding such processes, since measurements and experiments are very difficult
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if not impossible, and hence only limitedly available. The associated mathematical and computational

challenges are manifold. The mathematical models are usually coupled systems of nonlinear partial

differential equations and ordinary ones, involving largely varying physical properties and parameters,

like porosity, permeability or soil composition. Together with the large scale and possible complexity of

the domain, this poses significant computational challenges, making the design and analysis of robust

discretisation methods a non-trivial task.

In this work we focus on saturated/unsaturated flow of one fluid (water) in a porous medium (e.g. the

subsurface) occupying the domain Ω⊂ Rd (d ∈ {1,2,3}). Besides water, a second phase (air) is present,

which is assumed to be at a constant (atmospheric) pressure. This situation is described by the Richards

equation, here in pressure formulation

Φ∂tS(p)−∇ ·
[

KKK
µ

kr
(
S(p)

)
∇∇∇
(

p+ z
)]

= 0, (1)

see e.g. [1], originally [2, 3]. In the above Φ denotes the porosity, S is the water saturation, p is the water

pressure, kr is the relative permeability, KKK the intrinsic permeability and z =−ρwgx3 is the gravitational

term in direction of the x3-axis. Finally, g is the gravitational acceleration, ρw the water density and µ its

viscosity. With T > 0 being a maximal time, the equation is defined for the time t ∈ (0,T ) on the bounded

Lipschitz domain Ω.

Below we propose a domain decomposition (DD) scheme for the numerical solution of (1). To this aim

we assume that Ω is partitioned into two subdomains Ωl (l ∈ {1,2}) separated by a Lipschitz-continuous

interface Γ, see Fig. 1. In other words one has Ω = Ω1 ∪Ω2 ∪Γ. The restriction to two subdomains is

made for the ease of presentation, but the scheme can be extended straightforwardly to more subdomains.

In each Ωl (l ∈ {1,2}) we use the physical pressure pl as primary variable. Furthermore, the permeability

and porosity in each of the subdomains may be different and even discontinuous, which is the case of a

heterogeneous medium consisting of block-type heterogeneity (like a fractured medium).

In view of its relevance for manifold applications in real life, Richards equation has been studied

extensively, both analytically and numerically, and the dedicated literature is extremely rich. We restrict

ourselves here by mentioning [4, 5] for the existence of weak solutions and [6] for the uniqueness.

Numerical schemes for the Richards equation, or in general for degenerate parabolic equations, are

analysed in [7, 8, 9, 10, 11, 12, 13, 14, 15]. Most of the papers are considering the backward Euler method

for the time discretisation in view of the low regularity of the solution, see [4], and to avoid restrictions

on the time step size.

Different approaches with regard to spatial discretisation have been considered. Galerkin finite el-

ements were used in [8, 16, 17]. Discontinuous Galerkin finite element schemes for flows through
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(heterogeneous) porous media have been studied in [18, 19]. Finite volume schemes including multipoint

flux approximation ones for the Richards equation are analysed in [20, 21, 13], and mixed finite elements

in [7, 22, 10, 11, 12, 15, 14]. Such schemes are locally mass conservative.

Applying the Kirchhoff transformation [4] brings the mathematical model to a form that simplifies

mathematical and numerical analysis, see e.g. [8, 7, 10, 11]. However, the transformed unknown is not

directly related to a physical quantity like the pressure, and therefore a postprocessing step is required after

a numerical approximation of the solution has been obtained. Alternatively, one may develop numerical

schemes for the original formulation and in terms of the physical quantities. Nevertheless, when proving

the convergence rigorously, one often resorts to a Kirchhoff transformed formulation as intermediate step.

Alternatively, sufficient regularity of the solution, e.g. by avoiding cases where the medium is completely

saturated, or completely dry, has to be assumed. We point out that in this work we will not make use of

the Kirchhoff transformation, keeping the equation in a more relevant form for applications.

If implicit methods are adopted for the time discretisation, the (elliptic or fully discrete) problems

obtained at each time step are nonlinear. For solving these, different approaches have been proposed. Ex-

amples are the Newton method [23, 24, 25], the Picard/modified Picard method [26, 27], or the Jäger-Kacur

method [28, 29]. We refer to [30] for the convergence analysis of such nonlinear schemes. Assuming that

the initial guess is the solution from the previous time step, the convergence of such schemes can only be

guaranteed under severe restriction for the time step in terms of the mesh size. Additionally, regularizing

the problem is required, which prevents the Jacobian from becoming singular. Such difficulties do not

appear when the L-scheme is being used, which is a fixed point scheme transforming the iteration into

a contraction, [31, 32, 16]. The convergence is merely linear but in a better norm (H1) and requires no

regularization or severe constraint on the time step. We also refer to [33] for a combination of the Newton

method and the L-scheme. Moreover, we mention [12] for the application of the L-scheme to Hölder

instead of Lipschitz continuous nonlinearities.

Independent of the chosen discretisation method and of the linearisation scheme, domain decompo-

sition (DD) methods offer an efficient way to reduce the computational complexity of the problem, and

to perform calculations in parallel. This is in particular interesting whenever domains with block type

heterogeneities are considered, as DD schemes allow decoupling the models defined in different homo-

geneous subdomains and solving these numerically in parallel. We refer to [34] for a detailed discussion

of linear DD methods and to [35] for a general introduction into the subject. Comprehensive studies of

nonlinear DD schemes in the field of fluid dynamics can be found in [36, 37, 38]. For articles strictly

related to porous media flow models, we refer to [39, 40] for an overview of different overlapping domain

decomposition strategies. Linear and nonlinear additive Schwartz methods are compared, and the use
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of such methods as linear and nonlinear preconditioners is discussed. Regardless of the type of the DD

scheme, choosing the optimal parameters is a key issue. Such aspects are analysed e.g. in [41, 42]. We

also refer to [43] for a DD algorithm for porous media flow models, where a-posteriori estimates are used

to optimize the parameters and the number of iterations.

Recall that the Richards equation is a nonlinear evolution equation. For solving this type of equation,

methods like parareal [44] and wave-form relaxation [45, 46] have been proposed. The main ideas there

are to decompose the problem into separate problems defined in time/space-time domains. DD methods

for the Richards equation are discussed in [47, 48]. In these papers the domain is decomposed into

multiple layers and the Richards models restricted to adjacent layers are coupled by Robin type boundary

conditions. The approach uses nonoverlapping domain-decomposition and generalises the ideas of the

method introduced in [49] for linear elliptic problems (see also [50, 51]), leading to decoupled, nonlinear

problems in the subdomains.

Here we consider a linear DD scheme for the numerical approximation of the time discrete problems

obtained after substructuring into subproblems and performing an Euler implicit time stepping. A nonover-

lapping DD scheme (referred to henceforth as LDD scheme) inspired by the DD method introduced in

[49] is defined. The LDD iterations are linear, based on an L-type scheme. This approach differs from the

one commonly used when dealing with nonlinear elliptic problems in the context of DD. In most cases,

the DD iterations lead to nonlinear subproblems. For solving these, iterative methods in each subdomain

are applied. In our approach, the linearisation step is part of the DD iterations, which reduces the com-

putational time. More precisely, the L-scheme idea is combined with the nonoverlapping DD scheme

such that the equations defined in each subdomain along with the Robin type coupling conditions on the

interface become linear. For the resulting scheme we prove rigorously the unconditional convergence, and

provide numerical examples supporting the theoretical findings and demonstrating its effectiveness.

The paper is structured as follows. In Sec. 2 we present the mathematical model and introduce the DD

scheme. Section 3 contains the analysis of the scheme. Finally, Sec. 4 provides numerical experiments

in two spatial dimensions, together with an analysis of the practical performance of the scheme. This

includes a comprehensive comparison (including robustness and efficiency) between the proposed DD

scheme and standard monolithic schemes based on Newton, modified Picard as well as the L-scheme.

2. Problem formulation and iterative scheme

2.1. Problem formulation

Recall that T > 0 and Ω ⊂ Rd is a bounded Lipschitz domain partitioned in two subdomains Ω1,2,

separated by the Lipschitz-continuous interface Γ. The boundary of Ω is denoted by ∂Ω and the portions
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Figure 1: Illustration of the domain Ω = Ω1 ∪ Ω2 ⊂ Rd with fixed interface Γ. Also shown are the normal vectors along the

interface.

of ∂Ω that are also boundaries of Ωl are denoted by ∂Ωl (see also Fig. 1). To ease the presentation, the

two subdomains are assumed to be homogeneous and isotropic, i.e. we can have two different relative

permeabilities kr = kr,l on each Ωl , the intrinsic permeabilities KKK = Kl are scalar and the two porosities

Φl (l = 1,2) are constant. The product Kl kr,l
Φl µl

in (1) is abbreviated by kl henceforth. We solve equation (1)

in Ω together with initial and homogeneous Dirichlet boundary conditions. We refer to [47, 52] for more

general conditions, including outflow-type ones.

On the two subdomains, the problem transforms into two subproblems, coupled through two conditions

at the interface Γ: the continuity of the normal fluxes and the continuity of the pressures. With the fluxes

FFF l :=−kl
(
Sl(pl)

)
∇∇∇
(

pl + z
)
, (1) becomes

∂tSl(pl)+∇∇∇ ·FFF l = 0 in Ωl× (0,T ], (2)

FFF1 ·nnn111 =−FFF2 ·nnn222 on Γ× [0,T ], (3)

p1 = p2 on Γ× (0,T ], (4)

pl = 0 on ∂Ωl× (0,T ]. (5)

This is closed by the initial conditions pl(·,0) := pl,0 in Ωl , where pl is the water pressure on Ωl , l = 1,2,

and kl are (given) scaled relative permeability functions, that are assumed to be smooth enough. In the

above, nnnlll stands for the outer unit normal vector at ∂Ωl .
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Semi-discrete formulation (discretisation in time)

For the time discretisation we let N ∈ N be a given and τ := T
N be the corresponding time step. Then

pn
l is the approximation of the pressure pl at time tn = nτ . The Euler implicit discretisation of (2) – (5)

reads

Sl
(

pn
l
)
−Sl

(
pn−1

l

)
+ τ∇∇∇ ·FFFn

l = 0 in Ωl , (6)

FFFn
1 ·nnn111 =−FFFn

2 ·nnn222 on Γ, (7)

pn
1 = pn

2 on Γ, (8)

pn
l = 0 on ∂Ω

l , (9)

where FFFn
l := kl

(
Sl(pn

l )
)
∇∇∇
(

pn
l + z

)
is the flux at time step tn. Observe that (7) and (8) are the coupling

conditions at the interface Γ.

2.2. The LDD iterative scheme

If
(

pn−1
1 , pn−1

2

)
is known,

(
pn

1, pn
2
)

can be obtained by solving the nonlinear system (6)–(9). To this

end, we define an iterative scheme that uses Robin type conditions at Γ to decouple the subproblems

in Ωl , and linearises the terms due to the saturation-pressure dependency by adding stabilisation terms

that cancel each other in the limit (see e.g. [33, 31]). Specifically, assuming that for some i ∈ N the

approximations pn,i−1
l and gi−1

l are known, we seek
(

pn,i
1 , pn,i

2

)
solving the problems

Ll pn,i
l −Ll pn,i−1

l + τ∇∇∇ ·FFFn,i
l =−Sl

(
pn,i−1

l

)
+Sl

(
pn−1

l

)
in Ωl , (10)

FFFn,i
l ·nnnlll = gi

l +λ pn,i
l on Γ× [0,T ], (11)

gi
l :=−2λ pn,i−1

3−l −gi−1
3−l . (12)

Following the previously introduced notation, FFFn,i
l :=−kl

(
Sl(pn,i−1

l )
)
∇∇∇
(

pn,i
l + z

)
denotes the linearised

flux at iteration i. By λ ∈ (0,∞), we denote a (free to be chosen) parameter used to weight the influence of

the pressure on the interface conditions at Γ. The parameters Ll > 0 must adhere to some mild constraints

in order for the scheme to converge, which will be discussed later, but other than that, are arbitrary. The

iteration starts with

pn,0
l := pn−1

l , and g0
l := FFFn−1

l ·nnnlll−λ pn−1
l ,

and clearly, the difference Ll pn,i
l −Ll pn,i−1

l is vanishing in case of convergence.

Remark 1. The usage of the terms gi
l and of the parameter λ is motivated by the following. With the

notation f n
l := FFFn

l ·nnnlll , the transmission conditions (7)-(8) become f n
1 =− f n

2 and pn
1 = pn

2. For any λ 6= 0,
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these are equivalent to

f n
1 = (− f n

2 −λ pn
2)+λ pn

1,

f n
2 = (− f n

1 −λ pn
1)+λ pn

2.
(13)

Denoting the terms between brackets by gl , one obtains

f n
1 = g1 +λ pn

1,

f n
2 = g2 +λ pn

2,
and

g1 =−2λ pn
2−g2,

g2 =−2λ pn
1−g1.

(14)

The conditions in (11)-(12) are the linearised counterparts of (14).

Remark 2 (different decoupling formulations). The decoupled conditions in (7)-(8) can be formulated

as convex combinations of the terms g and p, namely

FFFn,i
l ·nnnlll = (1−λ )gi

l +λ pn,i
l (11’)

(1−λ )gi
l :=−2λ pn,i−1

3−l − (1−λ )gi−1
3−l . (12’)

The convergence analysis below can be carried out for this formulation without any difficulty. However,

the DD scheme using this convex formulation showed a slower convergence in the numerical experiments

than when (11)-(12) was used. Moreover, it is easier to find close to optimal parameters for the latter.

Such aspects are discussed in Section 4. In view of this, in what follows we restrict the analysis to the

initial formulation.

Before formulating the main result we specify the notation that will be used below.

Notation 1. L2(Ω) is the space of Lebesgue measurable, square integrable functions over Ω. H1(Ω)

contains functions in L2(Ω) having also weak derivatives in L2(Ω). H1
0 (Ω) = C∞

0 (Ω)H1
, where the

completion is with respect to the standard H1 norm and C∞
0 (Ω) is the space of smooth functions with

compact support in Ω. The definition for H1(Ωl) (l = 1,2) is similar. With Γ being a (d−1) dimensional

manifold in Ω̄, H
1
2 (Γ) contains the traces of H1 functions on Γ (see e.g. [53, 54, 34]. Given u ∈ H1(Ω),

by its trace on Γ is denoted by u|Γ.

Furthermore, the following spaces will be used

Vl :=
{

u ∈ H1(Ωl)
∣∣u|

∂Ωl ≡ 0
}
, (15)

V :=
{
(u1,u2) ∈ V1×V2

∣∣u1|Γ ≡ u2|Γ
}
, (16)

H1/2
00 (Γ) =

{
ν ∈ H1/2(Γ)

∣∣ν = w|Γ for a w ∈ H1
0 (Ω)

}
. (17)

Note, that V = H1
0 (Ω). H1/2

00 (Γ)′ denotes the dual space of H1/2
00 (Γ). 〈·, ·〉X will denote the L2(X) scalar

product, with X being one of the sets Ω, Ωl (l = 1,2) or Γ. Whenever self understood, the notation of the
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domain of integration X will be dropped. Furthermore,
〈
·, ·
〉

Γ
stands also for the duality pairing between

H1/2
00 (Γ)′ and H1/2

00 (Γ).

In what follows we make the following

Assumptions 1. With l = 1,2, we assume that

a) kl : R→ [0,1] are strictly monotonically increasing and Lipschitz continuous functions with Lips-

chitz constants Lkl > 0,

b) there exists m ∈ R such that 0 < m≤ k1(S), k2(S) for all S ∈ R,

c) Sl : R→ R are monotonically increasing and Lipschitz continuous functions with Lipschitz con-

stants LSl > 0.

For later use we define Lk := max{ Lk1 ,Lk2} and LS := max{LS1 ,LS2}.

In a simplified formulation, the main result in this paper is

Theorem 1. Assume there exists a solution pair (pn
1, pn

2) to (6)–(9) that additionally fulfils supl‖∇∇∇
(

pn
l +

z
)
‖L∞ ≤M < ∞. Let Ll obey LSl < 2Ll for l = 1,2 and assume that the time step τ > 0 is chosen small

enough, so that for both l one has

τ <
2m

L2
kl

M2

(
1

LSl

− 1
2Ll

)
. (18)

Then the sequence of solution pairs
{
(pn,i

1 , pn,i
2 )
}

i≥1 of (10)–(11) converges to (pn
1, pn

2).

Remark 3. The precise form of Theorem 1 will be formulated in Section 3, after having defined a weak

solution. The theorem above is given for the ease of presentation.

3. Analysis of the scheme.

This section gives the convergence proof for the proposed scheme. The starting point is the Euler

implicit discretisation in Section 2. Assuming
(

pn−1
1 , pn−1

2

)
∈ V to be known, a weak formulation of

(6)–(9) is given by

Problem 1 (Semi-discrete weak formulation). Find (pn
1, pn

2) ∈ V such that FFFn
l · nnnlll ∈ H1/2

00 (Γ)′ for

l = 1,2 and

〈
Sl(pn

l ),ϕl
〉
− τ
〈
FFFn

l ,∇∇∇ϕl
〉
+ τ
〈
FFFn

3−l ·nnnlll ,ϕl |Γ
〉

Γ
=
〈
S1(pn−1

1 ),ϕ1
〉
, (19)

for all (ϕ1,ϕ2) ∈ V .
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Remark 4. If (pn
1, pn

2) ∈ V is a solution of Problem 1, we have pn
1|Γ = pn

2|Γ by definition of V . Testing

in (19) by an arbitrary ϕl ∈ C∞
0 (Ωl) shows that the distribution ∇∇∇·FFFn

l is regular and in L2, yielding

FFFn
l ∈ H(div,Ωl) and

Sl(pn
l )−Sl(pn−1

l ) =−τ ∇∇∇·FFFn
l a. e. in Ωl (20)

by the variational lemma. By Lemma III. 1.1 in [53], FFFn
l · nnnlll ∈ H−1/2(∂Ωl) and integrating by parts in

(19) yields

0 =−
〈
FFFn

l ·nnnlll ,ϕl |Γ
〉

Γ
+
〈
FFFn

3−l ·nnnlll ,ϕl |Γ
〉

Γ
(21)

for all (ϕ1,ϕ2) ∈ V . Therefore

FFFn
l ·nnnlll = FFFn

3−l ·nnnlll (22)

in H1/2
00 (Γ)′ since the trace is a surjective operator.

Note additionally that Problem 1 is equivalent to the semi-discrete Richards equation on the whole domain,

namely to find (pn
1, pn

2) ∈ V such that〈
S1(pn

1),ϕ1
〉
− τ
〈
FFFn

1,∇∇∇ϕ1
〉
+
〈
S2(pn

2),ϕ2
〉
− τ
〈
FFFn

2,∇∇∇ϕ2
〉

=
〈
S1(pn−1

1 ),ϕ1
〉
+
〈
S2(pn−1

2 ),ϕ2
〉
, (23)

for all (ϕ1,ϕ2) ∈ V .

Remark 5. By applying a Kirchhoff transform in each subdomain Ωl , Problem 1 can be reformulated

as a nonlinear transmission problem. The existence and uniqueness of a solution for such problems has

been studied in [55, 56] for the case when Ω1 is surrounded by Ω2, and the common boundary is smooth,

however.

Now we can give the weak form of the iterative scheme. Let n ∈ N and assume that the pair
(

pn−1
1 ,

pn−1
2

)
∈ V is given. Furthermore, let λ > 0 and Ll > 0 (l = 1,2) be fixed parameters and

pn,0
l := pn−1

l , as well as g0
l := FFFn−1

l ·nnnlll−λ pn−1
l |Γ.

The iterative scheme is defined through

Problem 2 (L-scheme, weak form). Let i∈N and assume that the approximations
{

pn,k
l

}i−1
k=0 and

{
gk

l

}i−1
k=0

are known for l = 1,2. Find
(

pn,i
1 , pn,i

2

)
∈ V such that

Ll
〈

pn,i
l ,ϕl

〉
− τ
〈
FFFn,i

l ,∇∇∇ϕl
〉
+ τ
〈
λ pn,i

l +gi
l ,ϕl
〉

Γ

= Ll
〈

pn,i−1
l ,ϕl

〉
−
〈
Sl(pn,i−1

l )−Sl
(

pn−1
l

)
,ϕl
〉

(24)〈
gi

l ,ϕl
〉

Γ
:=
〈
−2λ pn,i−1

3−l −gi−1
3−l ,ϕl

〉
Γ

(25)
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holds for all (ϕ1,ϕ2) ∈ V .

3.1. Intuitive justification of the L-scheme

We start the analysis by taking a closer look at the formal limit of the L-scheme iterations in weak

form and show that this is actually a reformulation of Problem 1.

Lemma 2 (Limit of the L-scheme). Let n ∈ N be fixed and assume that the functions pn
l ∈ Vl and

gl ∈ H1/2
00 (Γ)′ (l = 1,2) exist such that

〈
Sl(pn

l ),ϕl
〉
−
〈
Sl
(

pn−1
l

)
,ϕl
〉
− τ
〈
FFFn

l ,∇∇∇ϕl
〉
+ τ
〈
λ pn

l ,+gl ,ϕl
〉

Γ
= 0, (26)〈

gl ,ϕl
〉

Γ
=
〈
−2λ pn

3−l−g3−l ,ϕl
〉

Γ
, (27)

hold for all (ϕ1,ϕ2) ∈ V . Then the interface conditions

pn
1|Γ = pn

2|Γ in H1/2
00 (Γ), (28)

FFFn
1 ·nnn111 = FFFn

2 ·nnn111 in H1/2
00 (Γ)′ (29)

are satisfied and (pn
1, pn

2) solves Problem 1. Moreover,

gl =−λ pn
l |Γ +FFFn

l ·nnnlll (30)

in H1/2
00 (Γ)′. Conversely, if (pn

1, pn
2) ∈ V is a solution of Problem 1 and gl :=−λ pn

l |Γ +FFFn
l ·nnnlll , then pn

l

and gl solve the system (26), (27).

Remark 6. Lemma 2 states that solving Problem 1 is equivalent to finding a solution to (26), (27). This

reformulation will be used to show, that the L-scheme converges to a solution of Problem 1

Proof. Writing out (27) for l = 1,2 and subtracting the resulting equations yields pn
1|Γ = pn

2|Γ in the sense

of traces. On the other hand, adding up these equations leads to (g1 +g2) =−λ (pn
1|Γ + pn

2|Γ). Inserting

this into the sum of the equations (26) leads to (23), and by equivalence to the semi-discrete formulation

(19). Moreover, by (20) one has Sl(pn
l )−Sl(pn−1

l ) =−τ ∇∇∇·FFFn
l a.e. and therefore integrating by parts in

(26) gives gl =−λ pn
l |Γ +FFFn

l ·nnnlll in H1/2
00 (Γ)′.

Conversely, if (pn
1, pn

2) solves Problem 1, then pn
1|Γ = pn

2|Γ and

gl =−λ pn
l |Γ +FFFn

l ·nnnlll =−λ pn
3−l |Γ +FFFn

3−l ·nnn3−l =−2λ pn
3−l |Γ−g3−l (31)

is deduced by the flux continuity (22). Finally, (26) now follows by integrating (20) by parts and using the

definition of gl .
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3.2. Convergence of the scheme

The convergence of the L-scheme involves two steps: first, we prove the existence and uniqueness of

a solution to Problem 2 defining the linear iterations, and then we prove the convergence of the sequence

of such solutions to the expected limit.

Lemma 3. Problem 2 has a unique solution.

Proof. This is a direct consequence of the Lax-Milgram lemma.

We now prove the convergence result, which was announced in Theorem 1. We assume that the

solution
(

pn−1
1 , pn−1

2

)
of Problem 1 at time step (n− 1) is known and let pn,0

l ∈ Vl be arbitrary starting

pressures (however, a natural choice is pn,0
l := pn−1

l ).

Lemma 3 enables us to construct a sequence
{

pn,i
l

}
i∈N0
∈ V N

l of solutions to Problem 2 and prove its

convergence to the solution
(

pn
1, pn

2
)

of Problem 1 at the subsequent time step.

Theorem 4 (Convergence of the DD scheme). Assume there exists a solution (pn
1, pn

2) ∈ V to Problem

1 s.t. supl‖∇∇∇
(

pn
l + z

)
‖L∞ ≤M < ∞ and let gl be as in (30). Let Assumptions 1 hold, λ > 0 and Ll ∈ R

be given with LSl/2 < Ll for l = 1,2. For arbitrary starting pressures pn,0
l := vl,0 ∈ Vl (l = 1,2) let{

(pn,i
1 , pn,i

2 )
}

i∈N0
be the sequence of solutions of Problem 2 and let

{
gi

l

}
i∈N0

be defined by (25). Assume

further that the time step τ satisfies

τ <
2m

L2
kl

M2

(
1

LSl

− 1
2Ll

)
. (32)

Then pn,i
l → pn

l in Vl and gi
l → gl in V ′l as i→ ∞ for l = 1,2.

Remark 7. The essential boundedness of the pressure gradients can be proven under the additional

assumption that the functions Sl are strictly increasing and the domain is of class C1,α , see e.g. [57,

Lemma 2.1].

Proof. We introduce the iteration errors ei
p,l := pn

l − pn,i
l as well as ei

g,l := gn
l − gi

l , add Ll〈pn
l ,ϕl〉 −

Ll〈pn
l ,ϕl〉 to (26) and subtract (24) to arrive at

Ll
〈
ei

p,l ,ϕl
〉
+ τλ

〈
ei

p,l ,ϕl
〉

Γ
+ τ
〈
ei

g,l ,ϕl
〉

Γ
+ τ

[〈
−FFFn

l−kl
(
Sl(pn,i−1

l )
)
∇∇∇
(

pn
l + z

)
+kl

(
Sl(pn,i−1

l )
)
∇∇∇
(

pn
l + z

)
+FFFn,i

l ,∇∇∇ϕl

〉]
= Ll

〈
ei−1

p,l ,ϕl
〉
−
〈
Sl(pn

l )−Sl(pn,i−1
l ),ϕl

〉
. (33)

Inserting ϕl := ei
p,l in (33) and noting that

Ll

〈
ei

p,l− ei−1
p,l ,e

i
p,l

〉
=

Ll

2

[∥∥ei
p,l

∥∥2−
∥∥ei−1

p,l

∥∥2
+
∥∥ei

p,l− ei−1
p,l

∥∥2
]
,

11



yields

Ll

2

[∥∥ei
p,l

∥∥2−
∥∥ei−1

p,l

∥∥2
+
∥∥ei

p,l− ei−1
p,l

∥∥2
]
+
〈
Sl(pn

l )−Sl(pn,i−1
l ),ei−1

p,l

〉︸ ︷︷ ︸
=:I1

+τλ
〈
ei

p,l ,e
i
p,l
〉

Γ

=
〈
Sl(pn

l )−Sl(pn,i−1
l ),ei−1

p,l − ei
p,l
〉︸ ︷︷ ︸

=:I2

−τ
〈
ei

g,l ,e
i
p,l
〉

Γ

− τ

〈(
kl
(
Sl(pn

l )
)
− kl

(
Sl(pn,i−1

l )
))

∇∇∇
(

pn
l + z

)
,∇∇∇ei

p,l

〉
︸ ︷︷ ︸

=:I3

− τ

〈
kl
(
Sl(pn,i−1

l )
)
∇∇∇ei

p,l ,∇∇∇ei
p,l

〉
.︸ ︷︷ ︸

=:I4

(34)

We estimate now the terms I1–I4 in (34) one by one. By Assumption 1c), for I1 we have

1
LSl

∥∥Sl(pn
l )−Sl(pn,i−1

l )
∥∥2 ≤

〈
Sl(pn

l )−Sl(pn,i−1
l ),ei−1

p,l

〉
. (35)

I2 is estimated by

∣∣I2
∣∣= ∣∣∣〈Sl(pn

l )−Sl(pn,i−1
l ),ei−1

p,l − ei
p,l

〉∣∣∣
≤ Ll

2

∥∥ei−1
p,l − ei

p,l

∥∥2
+

1
2Ll

∥∥Sl(pn
l )−Sl(pn,i−1

l )
∥∥2
. (36)

For an εl > 0 to be chosen below we use Young’s inequality to deal with I3, which can be estimated by

∣∣I3
∣∣= ∣∣∣τ〈(kl

(
Sl(pn

l )
)
− kl

(
Sl(pn,i−1

l )
))

∇∇∇
(

pn
l + z

)
,∇∇∇ei

p,l

〉∣∣∣
≤ τ
∥∥(kl

(
Sl(pn

l )
)
− kl

(
Sl(pn,i−1

l )
))

∇∇∇
(

pn
l + z

)∥∥∥∥∇∇∇ei
p,l

∥∥
≤ τLkl M

∥∥Sl(pn
l )−Sl(pn,i−1

l )
∥∥∥∥∇∇∇ei

p,l

∥∥
≤ τLkl Mεl

∥∥Sl(pn
l )−Sl(pn,i−1

l )
∥∥2

+ τ
Lkl M
4εl

∥∥∇∇∇ei
p,l

∥∥2
, (37)

where we used the Lipschitz continuity of kl and the assumption supl
∥∥∇∇∇
(

pn
l + z

)∥∥
L∞ < M. Finally, by

Assumption 1b) one has

τ

〈
kl
(
Sl(pn,i−1

l )
)
∇∇∇ei

p,l ,∇∇∇ei
p,l

〉
≥ τm

∥∥∇∇∇ei
p,l

∥∥2 (38)

for I4. Using the estimates (35)–(38), (34) becomes

Ll

2

[∥∥ei
p,l

∥∥2−
∥∥ei−1

p,l

∥∥2
]
+

1
LSl

∥∥Sl(pn
l )−Sl(pn,i−1

l )
∥∥2

+ τλ
〈
ei

p,l ,e
i
p,l
〉

Γ
+ τ
〈
ei

g,l ,e
i
p,l
〉

Γ

≤
(

1
2Ll

+ τLkl Mεl

)∥∥Sl(pn
l )−Sl(pn,i−1

l )
∥∥2

+ τ

(
Lkl M
4εl
−m

)∥∥∇∇∇ei
p,l

∥∥2
. (34’)

12



In order to deal with the interface term τ
〈
ei

g,l ,e
i
p,l

〉
Γ

recall, that
〈
·, ·
〉

Γ
denotes the dual pairing of H1/2

00 (Γ)′

and H1/2
00 (Γ) and the H1/2

00 (Γ)-norm simultaneously. Subtracting (25) from (27), i.e. ei
g,l =−2λei−1

p,3−l−

ei−1
g,3−l , we get ∥∥ei

p,l

∥∥2
Γ
=

1
4λ 2

(∥∥ei+1
g,3−l

∥∥2
Γ
−
∥∥ei

g,l

∥∥2
Γ
−4λ

〈
ei

p,l ,e
i
g,l
〉

Γ

)
. (39)

With b ∈ {p,g} we let ei
b := (ei

b,1,e
i
b,2) ∈ V1×V2 and ‖ei

b‖2 :=
∑

l=1‖ei
b,l‖2. Similarly, on Γ we let〈

ei
b,e

i
b

〉
Γ

:=
∑2

l=1
〈
ei

b,l ,e
i
b,l

〉
Γ

and correspondingly ‖ei
b‖2

Γ
=
∑2

l=1‖ei
b,l‖2

Γ
. Summing in (39) over l = 1,2

gets

‖ei
p‖2

Γ =
1

4λ 2

(
‖ei+1

g ‖2
Γ−‖ei

g‖2
Γ−4λ

〈
ei

p,e
i
g
〉

Γ

)
. (40)

Doing the same for (34’) and inserting (40), leaves us with

Ll

2

[∥∥ei
p
∥∥2−

∥∥ei−1
p
∥∥2
]
+

2∑
l=1

1
LSl

∥∥Sl(pn
l )−Sl(pn,i−1

l )
∥∥2

+
τ

4λ

(
‖ei+1

g ‖2
Γ−‖ei

g‖2
Γ

)
+ τ

2∑
l=1

(
m−

Lkl M
4εl

)∥∥∇∇∇ei
p,l

∥∥2

≤
2∑

l=1

(
1

2Ll
+ τLkl Mεl

)∥∥Sl(pn
l )−Sl(pn,i−1

l )
∥∥2
. (41)

Now, summing for the iteration index i = 1, . . . ,r and noticing telescopic sums one gets

r∑
i=1

2∑
l=1

( 1
LSl

− 1
2Ll
− τLkl Mεl

)∥∥Sl(pn
l )−Sl(pn,i−1

l )
∥∥2

+ τ

r∑
i=1

2∑
l=1

(
m−

Lkl M
4εl

)∥∥∇∇∇ei
p,l

∥∥2

≤ Ll

2

[∥∥e0
p
∥∥2−

∥∥er
p
∥∥2
]
+

τ

4λ

(
‖e1

g‖2
Γ−‖er+1

g ‖2
Γ

)
. (42)

Now we choose εl =
Lkl

M
2m , hence m− Lkl

M
4εl

= m
2 > 0 for both l. Recalling the restriction on Ll , 1

LSl
− 1

2Ll
> 0,

as well as that by the time step restriction 1
LSl
− 1

2Ll
− τ

L2
kl

M2

2m > 0 for l = 1,2, the estimates

r∑
i=1

2∑
l=1

(
1

LSl

− 1
2Ll
− τ

L2
kl

M2

2m

)∥∥Sl(pn
l )−Sl(pn,i−1

l )
∥∥2 ≤ Ll

2

∥∥e0
p
∥∥2

+
τ

4λ
‖e1

g‖2
Γ, (43)

τ

r∑
i=1

m
2

∥∥∇∇∇ei
p
∥∥2 ≤ Ll

2

∥∥e0
p
∥∥2

+
τ

4λ
‖e1

g‖2
Γ (44)

follow for for any r ∈ N. Since the right hand sides are independent of r, we thereby conclude that the

series on the left are absolutely convergent and therefore
∥∥Sl(pn

l )−Sl(pn,i−1
l )

∥∥,
∥∥∇∇∇ei

p,l

∥∥ −→ 0 as i→ ∞.

Moreover, (44) implies
∥∥ei

p,l

∥∥ −→ 0, (i→ ∞) as well, by the Poincaré inequality.
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To show that ei
g,l → 0 in V ′l we subtract again (24) from (26) and consider test functions ϕl ∈C∞

0 (Ωl)

to get

−τ

〈
FFFn

l −FFFn,i
l ,∇∇∇ϕl

〉
=−Ll

〈
ei

p,l ,ϕl
〉
+Ll

〈
ei−1

p,l ,ϕl
〉
−
〈
Sl(pn

l )−Sl(pn,i−1
l ),ϕl

〉
. (45)

Thus, ∇∇∇·
(

FFFn
l −FFFn,i

l

)
exists in L2 and

−τ ∇∇∇·
(

FFFn
l −FFFn,i

l

)
= Ll

(
ei

p,l− ei−1
p,l

)
+Sl(pn

l )−Sl(pn,i−1
l ) (46)

almost everywhere. Therefore, for any ϕl ∈ Vl one has∣∣∣〈∇∇∇·
(
FFFn

l −FFFn,i
l

)
,ϕl

〉∣∣∣≤ Ll

τ

∥∥ei
p,l− ei−1

p,l

∥∥∥∥ϕl
∥∥+ 1

τ

∥∥Sl(pn
l )−Sl(pn,i−1

l )
∥∥∥∥ϕl

∥∥. (47)

Abbreviating the left hand side of (47) as
∣∣Ψn,i

l

(
ϕl
)∣∣, (47) means

sup
ϕl∈Vl
ϕl 6=0

∣∣Ψn,i
l

(
ϕl
)∣∣

‖ϕl‖Vl

≤ Ll

τ

∥∥ei
p,l− ei−1

p,l

∥∥
+

1
τ

∥∥Sl(pn
l )−Sl(pn,i−1

l )
∥∥−→ 0 (i→ ∞) (48)

as a consequence of (44). In other words
∥∥Ψ

n,i
l

∥∥
V ′l
→ 0 as i→ ∞. Starting again from (33) (without the

added zero term), this time however inserting ϕl ∈ Vl , integrating by parts and keeping in mind (46) one

gets

〈
ei

g,l ,ϕl
〉

Γ
=−λ

〈
ei

p,l ,ϕl
〉

Γ
+
〈[

FFFn
l −FFFn,i

l

]
·nnnlll ,ϕl

〉
Γ

. (49)

We already know that
∥∥ei

p,l

∥∥
Vl
→ 0 as i→ 0 so by the continuity of the trace operator the first term on the

right vanishes in the limit. For the last summand in (49) we use the integration by parts formula to obtain〈[
FFFn

l −FFFn,i
l

]
·nnnlll ,ϕl |Γ

〉
Γ

= Ψ
n,i
l (ϕl)+

〈
FFFn

l −FFFn,i
l ,∇∇∇ϕl

〉
. (50)

While the first term on the right approaches 0, the second can be estimated by∣∣∣〈kl
(
Sl(pn

l )
)
∇∇∇
(

pn
l + z

)
− kl

(
Sl(pn,i−1

l )
)
∇∇∇
(

pn,i
l + z

)
,∇∇∇ϕl

〉∣∣∣
≤ Lkl M

∥∥S
(

pn
l
)
−S
(

pn,i−1
l

)∥∥∥∥ϕl
∥∥

Vl
+
∥∥∇∇∇pn,i

l

∥∥∥∥ϕl
∥∥

Vl
, (51)

where we used the same reasoning as in (37). With this we let i→ ∞ in (50) to obtain

sup
ϕl∈Vl
‖ϕl‖Vl

=1

∣∣∣〈[FFFn
l −FFFn,i

l

]
·nnnlll ,ϕl

〉
Γ

∣∣∣≤ ∥∥Ψ
n,i
l

∥∥
V ′l

+Lkl M
∥∥S
(

pn
l
)
−S
(

pn,i−1
l

)∥∥+∥∥∇∇∇pn,i
l

∥∥−→ 0. (52)
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Finally, using the above and letting i→ ∞ in (49) gives

sup
ϕl∈Vl
ϕl 6=0

∣∣〈ei
g,l ,ϕl

〉
Γ

∣∣
‖ϕl‖Vl

−→ 0.

This shows ei
g,l → 0 in V ′l for both l and concludes the proof.

Remark 8. Note that Theorem 4 states that if a solution to the semi-discrete coupled problem exists, then

it is the limit of the iteration scheme. Since in the convergence proof we use the existence of a solution

to Problem 1, the argument cannot be used to prove existence. The difficulty lies in the fact that the

nonlinearities encountered in the diffusion terms are space dependent and may be discontinuous w.r.t. x

over the interface.

4. Numerical Experiments

This section is devoted to numerical experiments and the implementation of the proposed domain

decomposition L-scheme. As our formulation and analysis did not specialise to a particular spacial

discretisation, the numerical implementation of the LDD scheme can in principal be done with finite

difference, finite elements as well as finite volume schemes. Since mass conservation is an essential

feature of porous media flow models, we adopted a cell-centred two point flux approximation variant of a

finite volume scheme to reflect this on the numerical level. The domain Ω is assumed to be rectangular

and a rectangular uniform mesh was used.

Remark 9 (different decoupling formulations revisited). We saw in Remark 2 that another decoupling

formulation is possible. In fact, this can be taken a step further. Equations (11), (12) as well as (11’), (12’)

can be embedded into a combined formulation. For some 0 < η < 1 and M > 0, consider the generalised

decoupling

FFFn,i
l ·nnnlll = M

[
(1−η)gi

l +η pn,i
l

]
, (11’’)

(1−η)gi
l =−2η pn,i−1

3−l − (1−η)gi−1
3−l . (12’’)

Observe that the λ -formulation (11), (12), as well as the convex-combination formulation (11’), (12’), are

special cases of this general formulation: In particular, M = (1−η)−1 and λ = η(1−η)−1 recovers the

λ -formulation, M = 1 and η = λ yields the convex-combination formulation. Although (11’’) and (12’’)

might give even greater parametric control over the numerics, in this paper we adhere to the λ -formulation

because of its simplicity. Fig. 10 and Fig. 11 show the influence of λ and η in both formulations.
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We start by considering an analytically solvable example. The LDD scheme is tested against other

frequently used schemes that do not use a domain decomposition. All of them are defined on the entire

domain and the continuity of normal flux and pressure over Γ is maintained implicitly. The first scheme

to be compared is a finite volume implementation of the original L-scheme on the whole domain (see

[16, 31, 33]), henceforth referred to as LFV scheme. Comparison is also drawn to the modified Picard

scheme, (which performs better than the Picard method, see [26]), which is given by

S′l
(

pn,i−1
l

)(
pn,i

l − pn,i−1
l

)
+ τ∇∇∇ ·FFFn,i

l = τ fl−
(

Sl
(

pn,i−1
l

)
−Sl

(
pn−1

l

))
on Ωl , (53)

q
FFFn,i

l ·nnn111
y
= 0 on Γ. (54)

Here, the brackets J·K denote the jump over the interface. Finally, a comparison with the quadratically

convergent Newton scheme is made. Writing δ pi
l = pn,i

l − pn,i−1
l , it reads as follows:

S′l
(

pn,i−1
l

)
δ pi

l− τ∇∇∇ ·
[
kl
(
Sl(pn,i−1

l )
)
∇∇∇δ pi

l + k′l
(
Sl(pn,i−1

l )
)
S′l
(

pn,i−1
l

)
δ pi

l∇∇∇
(

pn,i
l + z

)]
= τ fl−

(
Sl
(

pn,i−1
l

)
−Sl

(
pn−1

l

))
− τ∇∇∇ ·

(
kl
(
Sl(pn,i−1

l )
)
∇∇∇
(

pn,i−1
l + z

))
on Ωl (55)

r
kl
(
Sl(pn,i−1

l )
)
∇∇∇δ pi

l ·nnn111

z
+

r
kl
(
Sl(pn,i−1

l )
)′

δ pi
l∇∇∇
(

pn,i−1
l + z

)
·nnn111

z

=−
r

kl
(
Sl(pn,i−1

l )
)
∇∇∇
(

pn,i−1
l + z

)
·nnn111

z
on Γ. (56)

We refer to [33] for a recent study on linearisations for Richards equation.

4.1. Results for a case with known exact solution

To demonstrate the robustness of the proposed scheme, we solve (2)–(5) with both Dirichlet and

Neumann type boundary conditions. In the first case we disregard gravity. Specifically, we consider

Ω1 = (−1,0)× (0,1), Ω2 = (0,1)× (0,1), and Γ = {0}× [0,1]. (57)

The relative permeabilities are k1(S1) = S2
1 on Ω1, k2(S2) = S3

2 on Ω2 and the saturations

Sl(p) =


1

(1−p)
1

l+1
for p < 0,

1 for p≥ 0
, l = 1,2. (58)

The boundaries and right hand sides are chosen to make the exact solution

p1(x,y, t) = 1− (1+ t2)(1+ x2 + y2), t > 0, (x,y) ∈Ω1,

p2(x,y, t) = 1− (1+ t2)(1+ y2), t > 0, (x,y) ∈Ω2,
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Figure 2: The domain used in the numerical examples. The boundary conditions are given in Table 1. The exact solution is also

given in each subdomain.

Ω1 Ω2

t = 0 p1(x,y,0) =−(x2 + y2) p2(x,y,0) =−y2

BCy = 0 ∂y p1 = 0 ∂y p2 = 0

y = 1 k1
(
S1(p1)

)
∂y p1 =

2
2+x2 k2

(
S2(p2)

)
∂y p2 = 1

x =−1 p1(−1,y, t) = 1− (1+ t2)(2+ y2)

x = 1 p2(1,y, t) = 1− (1+ t2)(1+ y2)

Table 1: Initial and boundary conditions for the example with exact solution.

and this corresponds to the right hand sides

f1(x,y, t) =
4

(1+ x2 + y2)2 −
t√

(1+ t2)3(1+ x2 + y2)
,

f2(x,y, t) =
2(1− y2)

(1+ y2)2 −
2t

3 3
√
(1+ t2)4(1+ y2)

,

for t > 0, and (x,y) ∈ Ωl respectively. The boundary and initial conditions are summed up in Table 1.

All linear systems were solved using a restarted generalised minimum residual method (gmres) [58]. To

boost up speed, sparse triplet format was used in the matrix computation. The programs are implemented

in ANSI C. For the implementation we took the same Ll in both sub-domains, i.e. L := L1 = L2. The

results are shown in Figures 3 and 4a. Fig. 3 shows the pressure distribution of the exact solution

p := χΩ1 · p1 + χΩ2 · p2 with the numerical solution pn,i := χΩ1 · p
n,i
1 + χΩ2 · p

n,i
2 plotted on top of it. For
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Figure 3: Comparison between the exact pressure and the numerical pressure provided by the LDD scheme.

∆x = 10−2, ∆t = 2 ·10−4 as well as parameters L = 0.25 and λ = 4, the maximum relative error was less

than 0.03%, i.e.
∥∥ pn−pn,i

pn

∥∥
L∞(Ω)

< 0.0003. The relative errors of the LDD, LFV and Newton schemes at

the mid-line y = 0.5 are plotted in Fig. 4a. The LDD scheme preserves the flux continuity and pressure

continuity at the interface at every time step without having to solve for the entire domain. We test

this theory numerically. Fig. 4b shows how different kinds of errors behave within one time step. The

errors ‖pn,i− pn,i−1‖L2(Ω), ‖pn,i− pn,i−1‖L∞(Ω) defined on the domain Ω, as well as
∥∥qpn,i

y∥∥
L2(Γ)

and∥∥qFFFn,i
lll ·nnnlll

y∥∥
L2(Γ)

defined on the interface Γ, are shown. We observe that the flux and pressure jump tend

to zero which implies that flux and pressure continuity is achieved. Note that the flux at x = 0 from the

exact solution is 0. Next, we compare the LDD scheme with other schemes and study their dependence

on discretisation parameters. We compare the Newton scheme, the (modified) Picard iteration, the already

mentioned LFV scheme and the LDD scheme, investigating the dependence of time step refinement and

space grid refinement separately.

The first study, shown in Fig. 5, plots log10
(
‖pn,i− pn,i−1‖L2(Ω)

)
for all schemes, at the fixed time step

corresponding to t = 0.2. As expected, Newton is the fastest and shows a quadratic convergence rate. But

at the same time, it is most susceptible to change in mesh size as observed from the slopes of the left-most

curves. The convergence rate of the Picard iteration is linear, faster than both the L-schemes and is stable

with respect to variation in mesh size. The L-schemes also exhibit linear convergence, albeit slower than

Picard, and the convergence speed does not vary much with mesh size. LFV and LDD schemes have

practically the same convergence rate. Table 2 complements the plot in Fig. 5 and lists experimental

average convergence rates, defined as ‖en,i+1
p ‖/‖en,i

p ‖, for all schemes (Newton data is not shown for
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(a) Comparison between the numerical solutions pro-

vided by the LDD, LFV and the Newton schemes. Plot-

ted are the relative errors
∥∥ pexact−pnum

pexact

∥∥ as functions of x,

for y = 0.5 and t = 1.

(b) Different errors vs inner iterations for the case with

exact solution. Here t = 0.2, L = 0.25 and λ = 4.

∆x = 0.1, 0.05, 0.02 as it reaches an error lower than 10−10 in 3 iterations).

∆x Newton Picard LFV LDD

0.1 - 0.0504 0.4046 0.4400

0.05 - 0.0504 0.3906 0.4270

0.02 - 0.0505 0.3909 0.4221

0.01 0.0113 0.0567 0.3910 0.4221

Type Quadratic Linear Linear Linear

Table 2: The average convergence rate, ‖en,i+1‖/‖en,i‖, for the

different schemes and with respect to the mesh-size.

Secondly, we study the dependence of the con-

vergence rates on time step size for a fixed mesh

size (∆x = 0.02). The error characteristics of all

four schemes in Fig. 6 are shown for t = 0.5. In

Fig. 6a both, Newton and Picard, diverge, whereas

both L-schemes converge for L = 0.25. The LFV

scheme exhibits some oscillations, the reason be-

ing the dependence of the choice of L on the time

step τ . Higher values of τ might require higher

values of L. Indeed, if we substitute L = 0.5 in the

LFV scheme (marked as LFV* in the diagram), we see a more robust behaviour. Note, that the LDD

scheme converges for all τ and is at least as fast as the LFV scheme in all the cases. For smaller values of

τ the Newton and Picard iteration converge faster than both L-schemes, as shown in Figures 6b and 6c.

According to the theory, the convergence of the Newton and Picard schemes is only guaranteed if the

initial guess is close enough to the exact solution. Therefore, starting the iteration with the numerical

solution at the previous time step this suggests that the time step should be taken small enough to have a
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Figure 5: Performance comparison and mesh study for the convergence of the LDD, LFV, Picard and Newton schemes. Here

L = 0.25 and λ = 4.

guaranteed convergence (see [24, 30, 33]. Contrariwise, L-schemes are free of this constraint.

Figure 7: Error decay for the different schemes for a constant

initial guess, pn,0 =−5. Here L = 0.25, λ = 4.

To illustrate this behaviour, we have investi-

gated the convergence of the schemes for a con-

stant initial guess. Specifically, pn,0 =−5 has been

used instead of pn,0 = pn−1. In this case, the New-

ton and Picard schemes are divergent whereas both

L-schemes still produce a good approximation af-

ter several iterations. This is displayed in Fig. 7.

A similar behaviour will be observed again while

discussing a numerical example with realistic pa-

rameters.

Remark 10. The convergence behaviour of the

LDD scheme can be optimized by choosing λ

properly. In the above comparison λ was chosen

differently for every choice of mesh size. The optimality of λ is dependent on the mesh and the time step
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(a) ∆t = 0.1 (b) ∆t = 0.01

(c) ∆t = 0.001

Figure 6: Convergence study for the time-steps τ = 0.1, 0.01, 0.001. Here, L = 0.25 for the LFV scheme and L = 0.5 for the LFV*

scheme. For the LDD scheme one has L = 0.25, λ = 2 in case 6a, L = 0.25, λ = 4 in case 6b, and L = 0.25, λ = 10 in case 6c.
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size. With a good choice of λ , one can make the LDD scheme at least as fast as the LFV scheme. This is

discussed in more detail in Section 4.3.

4.1.1. Results for a realistic case with van Genuchten parameters

We demonstrate the applicability of the LDD scheme for a case with realistic parameters, incorporating

also gravity effects. We consider a van-Genuchten-Mualem parametrisation [59] with the curves k and S

Sl(p) = Sl,r +(Sl,s−Sl,r)Φl(p),

Φl(p) =
1(

1+(−αl p)n̂l
)ml

, ml = 1− 1
n̂l
,

kl(S) =
√

Φl(p)
(

1−
(
1−Φl(p)

1
ml
)ml
)2

.

(59)

The specific parameter values are listed in Table 3 and are characteristic for particular types of materials,

silt loam G.E. 3 (Ω1) and sandstone (Ω2). These materials have very different absolute permeabilities

κ1,κ2, which makes the numerical calculations more challenging.

The dimensional governing equations and boundary conditions become (l = 1,2)

Ll pn,i
l + τ∇ ·FFFn,i

l = Ll pn,i−1
`

−φl
(
Sl(pn,i−1

l )−Sl(pn−1
l )

)
, on Ωl , (60)

FFFn,i
l ·nnnlll = gi

l +2λ pn,i
l , on Γ, (61)

pn,i
l ,= 0 on ∂Ωl . (62)

In this case FFFn,i
l =−κl

µ
kr,l
(
Sl(pn,i−1

l )
)(

∇∇∇pn,i
l −ρggg

)
. Here ggg = geeexxx is the gravitational acceleration aligned

with the positive x-direction, ρ , µ are the density and the viscosity of the fluid and κl , φl are the absolute

permeability as well as the porosity of the medium. Note that Fig. 2 is rotated by 90 degrees. The problem

is nondimensionalised by using the characteristic pressure p∗ :=−14.8×103Pa, length 1.48m and time

41.440s. This leads to the nondimensional quantities p̃, (x,y) and t. After nondimensionalisation, the

domain used is again taken to be Ω1 = (−1,0)× (0,1), Ω2 = (0,1)× (0,1). The initial condition used is

p̃(x,y,0) =−1 (63)

and boundary conditions are

p̃(−1,y, t) =

−1+ ty if y < (1− ε)t−1

−ε if y≥ (1− ε)t−1
,

p̃(1,y, t) =−1,
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Parameter Unit Silt Loam G.E. 3 (Ω1) Sandstone (Ω2)

Porosity (φl) - 0.35 0.35

Water Density (ρ) kg m−3 1×103 1×103

Water Viscosity (µ) Pa·s 1×10−3 1×10−3

Absolute permeability (κl) m2s 5.7407×10−14 1.2500×10−12

Retention exponent (n̂l) - 2.06 10.4

Retention parameter (αl) Pa−1 4.23×10−5 7.90×10−5

Irreducible water saturation (Sl,r) - 0.131 0.153

Irreducible air saturation (1−Sl,s) - 0.604 0.75

Table 3: The van Genuchten-Mualem parameters in the realistic test case.

together with a no-flow condition at y = 0,1. We take ε > 0 to avoid degeneracy.

Fig. 8a shows the different errors for this case and it can be seen that all the errors are decreasing

for the LDD scheme. Errors at the interface and inside the domain tend to 0, the convergence is slower

compared to the case with exact solution, however. This is due to the large variance of the parameters as

well as the highly nonlinear nature of the associated functions. Because of this, both Newton and Picard

schemes diverge. The behaviour of different schemes for the same set of parameters is shown in Fig.

8b. Observe that for the Newton scheme the starting error as well as the number of iterations required

increases steadily with t until t = 0.94, at which point the errors start diverging. The Picard scheme

becomes divergent even before t = 0.2. In contrast, both L-schemes remain stable in this case.

4.2. Time Performance

This section is devoted to the comparison of time performance of the schemes. We have seen that

L-schemes are more stable than Newton and Picard. But if they are converging, then Newton and Picard

schemes converge faster than the L-schemes. Below we investigate how the schemes compare to one

another with respect to actual computational time. We set an error tolerance for the schemes that stops the

iterations within one time step, after reaching an error lower than 10−6, i.e. ‖pn,i− pn,i−1‖L2(Ω) < 10−6.

This is to ensure that we get comparative CPU-clock-time for different schemes for the same degree of

accuracy.

We computed the exactly solvable case on a LINUX server (mammoth.win.tue.nl) for all four schemes

using the same set of parameters (∆x = 0.02, τ = 0.001, L = 0.25 and λ = 10). Figure 9 illustrates the

time-performances of these schemes over the whole computational time domain. Table 5 shows how many
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(a) Different errors vs inner iterations for the realistic

case at t = 0.2. The parameters are τ = 0.01, ∆x = 0.02,

Ll = 0.25 and λ = 10. Only the LDD scheme is shown in

this plot.

(b) Error vs inner iterations for the realistic case. LDD ,

LFV and Newton errors are plotted at t = 0.2. Newton∗

denotes the errors of Newton scheme at t = 0.9. Picard is

plotted at t = 0.02. Here, L = 0.5, λ = 10.

Figure 8: Error plots and scheme comparison for the realistic case.

inner-iterations are required on average for different schemes to reach the error criterion at different points

in time.

Figure 9: Time performance of the L-DD, L-FV and the Newton-

FV schemes.

Iteration requirement per time step increases

for all schemes as the boundary conditions change

more rapidly with time. Table 5 shows the average

time taken and how many gmres iterations (outer

and inner) were required by each scheme to exe-

cute one inner iteration.

Unsurprisingly, the Newton scheme is still

fastest, followed by Picard and the LDD scheme.

But LDD competes closely with Newton and Pi-

card. Even more surprising is the fact that the LFV

scheme takes considerably more time to reach the

desired accuracy compared to the LDD scheme,

despite both having almost the same convergence

rate. The reason becomes apparent from Table 5: The LDD scheme requires much less time per inner
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Average inner iterations required

Time-step/Scheme LDD LFV Picard Newton

10 7.3 7.5 2.3 2.3

50 9.880 10.72 2.520 2.060

100 11.26 12.31 2.760 2.030

500 11.19 11.79 2.952 2.006

1000 14.18 14.35 2.946 2.408

Avg. time per iter. 0.1965 0.5392 0.6591 0.6722

Avg. GMRES iterations 119+ 123 396.6 390.9 397.7

Table 5: The average number of inner iterations per time step required by the different schemes to reach the stopping criterion

‖pn,i− pn,i−1‖L2(Ω) < 10−6. The last two rows give the average time and gmres-iterations per inner iteration.

iteration than all other schemes. The LFV scheme has the second fastest average time per iteration. For

the Picard iteration, the derivative of the saturation function needs to be evaluated which in turn costs

more time than an iteration in the LFV scheme. The Newton scheme is computationally most expensive

per iteration because it calculates the Jacobian at every iteration.

Condition number

∆x 0.1 0.05 0.02

L-DD (Ω1) 7.6191 11.8947 73.362

L-DD (Ω2) 7.0219 12.3557 74.519

L-FV (Ω) 94.8158 171.47 397.34

Table 4: The condition number vs mesh size for the LDD and

LFV schemes. Here, τ = 0.001, t = 0.2, L = 0.25, λ = 10. The

condition numbers are calculated for the 200th time step for the

matrices of the first inner iteration.

The schemes that do not decouple the domain

require much more time and many more gmres-

iterations per inner iteration. The reason is that

the domain decomposition schemes involve smaller

matrices and and they have smaller condition num-

bers. This is illustrated by the last row of Table 5.

The LDD scheme requires on average 119 gmres-

iterations on Ω1 and 123 gmres-iterations on Ω2

and both domains have 52×50 elements. Compare

this with Newton, which takes almost 400 gmres-

iterations and deals with 104×50 variables on each

gmres-iteration. This explains why the LDD scheme takes so much less time per inner iteration. Table 4

compares the condition numbers of the LDD and the LFV scheme. It shows that the matrices for the LFV

scheme are worse conditioned than the ones of the LDD scheme. The latter has two condition numbers,

one for each domain. The 2-norm condition numbers were calculated with MATLAB’s build in cond()

function.
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Remark 11. The fact that the LDD scheme performance competes closely with Newton and Picard,

means that, LDD can potentially be made much faster than even Newton as it is parallelisable. This is the

key advantage of the LDD scheme along with its global convergence property.

4.3. Parameter dependence and key features

Having outlined the robustness and speed of the proposed LDD scheme we turn to investigate some

of its properties. Two important parameters have been introduced in the L-DD scheme, i.e. Ll and λ ,

and apart from a lower bound on Ll nothing has been specified about these parameters. This means that

they can freely be adjusted to give optimal convergence rate. In fact, in this section we will see that the

convergence rate depends strongly on these parameters.

The influence of λ

(a) The decay of the pressure error in terms of λ . (b) The decay of the g-error in terms of λ .

Figure 10: The influence of λ on the convergence rate. The parameters for the LDD scheme are τ = .01, ∆x = 0.02, Ll = 0.25 at

t = 0.2.

Figure 10 shows the influence of the parameter λ on error characteristics. All the results shown are

for the case with exact solution. Figure 10a focuses on the errors ‖pn,i− pn,i−1‖L2(Ω) on the domain Ω,

while Fig. 10b depicts the L2-errors ‖gi−gi−1‖L2(Γ) on the interface for the same time step. Clearly, λ

has tremendous impact on the convergence rate. The convergence rate rapidly increases with λ at first

but after a certain point the convergence rate starts decreasing. This trend is noticeable in both plots of

Figure 10. This indicates that there is an optimal lambda λopt for which the whole scheme has a fastest

convergence rate. The optimality of λ is actually a well studied behaviour in the domain decomposition
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literature. In [60, 50] it has been shown that λopt depends at least on mesh size and sub- domain size.

Later we will show that it also depends on Ll and τ in our case. This control over the convergence rate is

the reason why the λ -formulation was chosen over the convex-combination formulation given in Remark

2. To illustrate this, Fig. 11 shows the same plots as Figure 10 but for the convex-combination formulation.

In order to differentiate between plots more easily, we use the combined formulation (11’’), (12’’) and set

M = 1. For η = 0.01 the convex-combination formulation even fails to converge. In all other cases the

convergence is considerably slower.

(a) The decay of the pressure error in terms of η . (b) The decay of the g-error in terms of η .

Figure 11: The influence of η on the convergence rate in the convex-combination formulation (M = 1 in Remark 2). The parameters

for the LDD scheme are τ = 0.01, ∆x = 0.02, Ll = 0.25 at t = 0.2.

The influence of Ll

We briefly give an overview over the influence of Ll on the convergence rate. Figure 12 depicts this

for L := L1 = L2. For L-schemes it is common to diverge if L is too small, which seems to be the case

for L = 0.1. On the other hand, the convergence rate decreases significantly for very large L, a behaviour

that is a common trait of L-schemes as well, cf. [10]. It is best to choose L as small as possible, yet

great enough to ensure convergence of the scheme. Note that Ll = 0 represents the original (nonmodified)

Picard iteration case and Figure 12 suggests that the original Picard scheme fails for these problems.

The dependence of λopt on Ll , τ and ∆x

In this last section we investigate numerically how λopt depends on the choice of L, τ and ∆x. For a fixed

grid in time and space Table 6 lists convergence rates for different λ and L.
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Figure 12: The influence of L on the convergence rate, as ob-

tained for the inner iterations for the 50th time step.

With this table we can guess the interval in which

λopt lies. Within this estimated interval, Fig. 13

shows how the convergence rate varies with λ for

fixed L. For L = 0.25, ∆x = 0.02 and τ = 0.01 the

fastest convergence is achieved for λ = 4 (this is why

λ = 4 was chosen for the above comparisons, wher-

ever the specified L, ∆x, τ set was used). The λ de-

pendence for higher values of L is less pronounced.

For a fixed L, Tables 7a, 7b show the variance of

λopt with respect to time-step and mesh size respec-

tively. The shown tables are of course only a rough

estimate of λopt. Due to computation time, it is a

tedious process to find a close to exact value of λopt,

especially for very small time-step sizes. In practice the values are numerically guessed. The results

indicate quite a strong correlation of λopt with the time-step size, contrasted by a rather minor correlation

with the mesh size.

L λ = 0.1 λ = 1 λ = 10 λ = 100 λopt ∈

0.1 diverged diverged diverged diverged -

0.25 0.9020 0.6223 0.5480 0.7721 (1,10)

1 diverged 0.7675 0.7750 0.8138 (1,10)

5 diverged 0.8993 0.8718 0.8708 (10,100)

Table 6: The dependence of the convergence rates on λ and L: the geometric average of the contraction rates over the first 20

iterations and for different (L,λ ) pairs is given in the first columns, whereas the last gives the interval for λopt. Here, ∆x = 0.02,

∆t = 0.01, t = 0.2.

∆t 0.1 0.01 0.001

Nr iter.? 2 4 6

Avg. CR 0.4444 0.4221 0.5408

(a) λopt for ∆x = 0.02, Ll = 0.25

∆x 0.1 0.05 0.02 0.01

Nr iter.? 3 4 4 4

Avg. CR 0.4398 0.4270 0.4221 0.4221

(b) λopt for ∆t = 0.01, Ll = 0.25

Table 7: The dependence of λopt on ∆t and on ∆x.
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5. Conclusion

Figure 13: Convergence rate vs λ for L = 0.25 and L = 1.

For L = 0.25, λopt ≈ 4.

We considered a nonlinear parabolic problem ap-

pearing as mathematical model for variably saturated

flow in porous media. For the numerical solution of

the nonlinear, time discrete problems we proposed a

combined scheme (LDD) that is based on a fixed point

iteration (the L-scheme), and on a domain decomposi-

tion scheme involving Robin type coupling conditions

at the interface separating different subdomains. The

result is a scheme featuring the advantages of both ap-

proaches: an unconditional convergence, regardless

of time step and starting point, as well as a decoupling

of the time discrete problems into subproblems that

can be solved in parallel. The stability, robustness and

efficiency of the method is tested for various cases and also compared to Newton and Picard schemes. The

tests include situations where the latter diverge whereas the proposed scheme is converging. In summary,

the key advantages of the method are:

• The LDD scheme converges unconditionally. It can provide accurate results even in situations

where the Picard or Newton iterations fail.

• In conjunction with a suitable space discretisation, it provides a decoupled, mass conservative

approach. This is very useful in particular when dealing with models defined in media with block-

type heterogeneities, where the material properties in different blocks may vary significantly.

• Though linearly convergent, the computational time required by the LDD scheme for achieving

a certain accuracy of the approximation is comparable to the time needed by Newton and Picard

schemes, and much faster than a standard L-scheme applied to the model in the entire domain. This

efficiency is due to the fact that the scheme needs less time per inner iteration than a scheme defined

in the entire domain. Moreover LDD is parallelisable, which gives the possibility of increasing its

efficiency even further.

• The convergence rate of LDD schemes depends on the choice of L and λ . With the optimal choice

of parameters, the convergence order can be reduced significantly.
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