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Abstract In this work we consider the transport of a surfactant in a variably saturated
porous media. The water flow is modelled by the Richards equations and it is fully
coupled with the transport equation for the surfactant. Three linearization techniques
are discussed: the Newton method, the modified Picard and the L-scheme. Based on
these, monolithic and splitting schemes are proposed and their convergence is ana-
lyzed. The performance of these schemes is illustrated on four numerical examples.
For these examples, the number of iterations and the condition numbers of the linear
systems emerging in each iteration are presented.

Keywords Richards equation · reactive transport · linearization schemes · L-scheme ·
modified Picard · Newton method · splitting solvers

1 Introduction

Many societally relevant problems are involving multiphase flow and multicompo-
nent, reactive transport in porous media. Examples in this sense appear in the enhan-
ced oil recovery, geological CO2 storage, diffusion of medical agents into the human
body, or water or soil pollution. In all these situations, experimental results are diffi-
cult to obtain, if not possible at all, and therefore numerical simulations become a key
technology. The mathematical models for problems as mentioned above are (fully or
partially) coupled, non-linear, possible degenerate partial differential equations. In
most cases, finding explicit solutions is not possible, whereas developing appropriate
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algorithms for finding numerical solutions is a challenge in itself. Here we investi-
gate robust and efficient methods for solving the nonlinear problems obtained after
performing an implicit time discretization, the focus being on iterative, splitting or
monolithic schemes for fully coupled flow and transport.

Of particular interest here is the special case of multiphase, reactive flow in po-
rous media, namely the surfactant transport in soil [2,20,32,23,26,27]. Surfactants,
which are usually organic compounds, are commonly used for actively combating
soil and water pollution [17,37,12,42,13]. They contain both hydrophobic and hyd-
rophilic groups and are dissolved in the water phase, being transported by diffusion
and convection. Typically, the surfactants are employed in soil regions near the sur-
face (vadose zone), where water and air are present in the pores. Consequently, the
outcoming mathematical model accounts the transport of at least one species (the
surfactant, but often also the contaminant) in a variably saturated porous medium.
Whereas the dependence of the species transport on the flow is obvious, one can
encounter the reverse dependece as well since if the surfactants are affecting the in-
terfacial tension between water and air, leading to a dependency of the water flow on
the concentration of surfactant. In other words, one has to cope with a fully coupled
flow and transport problem, and not only with a one-way coupling, i.e. when only the
transport depends on the flow, as mostly considered in reactive transport [34].

Whereas the surfactant transport is described by a reaction-diffusion-convection
equation, water flow in variably saturated porous media is modelled by the Richards
equation [7,19]. The main assumption in this case is that the air remains in contact
with the atmosphere, having a constant pressure (the atmospheric pressure, here as-
sumed zero). This allows reducing the flow model to one equation, the Richards’
equation. In mathematical terms, this equation is degenerate parabolic, whose solu-
tion has typically low regularity [3].

From the above, and adopting the pressure head as the main unknown in the
Richards’ equation, we study here different linearization schemes for the model

∂θ(Ψ ,c)
∂ t

−∇ · (K(θ(Ψ ,c))∇(Ψ + z)) = H1 (1)

and
∂θ(Ψ ,c)c

∂t
−∇ · (D∇c−uwc)+R(c) = H2, (2)

holding for x ∈Ω (z being the vertical coordinate of x, pointing against gravity) and
t ∈ (0,T ]. Here Ω is a bounded, open domain in Rd (d = 1,2 or 3) having a Lip-
schitz continuous boundary ∂Ω and T > 0 is the final time. Further, θ(·, ·) denotes
the water content, and is a given function depending on the pressure head Ψ and of
the surfactant concentration c. Also, K(·) is the hydraulic conductivity, D > 0 the dif-
fusion/dispersion coefficient. Finally, uw is the water flux, R(·) the reaction term ex-
pressed as a function of the concentration c, and H1,H2 are the external sinks/sources.
Initial and boundary conditions, which are specified below, complete the system.

We point out that the water content and the hydraulic conductivity, θ(·, ·) and
K(·) are given non-linear functions. They are medium- and surfactant-dependent and
are determined experimentally (see [19]). Specific choices are provided in Section 2.
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To solve numerically the system (1) – (2) one needs to discretize it in time and
space. We refer to [16] for a practical review of numerical methods for the Richards
equation. Due to the low regularity of the solution and the need of relatively large
time steps, the backward Euler method is a good candidate for the time discretization.
Multiple spatial discretization techniques are available, such as the Galerkin Finite
Element Method (FEM) [31,5,38], the Mixed Finite Element Method (MFEM) [4,
25,35,43,44], the Multi-Point Flux Approximation (MPFA) [24,6,1] and the Finite
Volume Method (FVM) [10,14,15].

Since the time discretization is not explicit, the outcome is a sequence of non-
linear problems, for which a linearization step has to be performed. Widely used
linearization schemes are the quadratic, locally convergent Newton method and the
modified Picard method [11]. For both, the convergence is guaranteed if the starting
point is close to the solution. For evolution equations, as the initial guess is typically
the solution at the previous time, this still induces severe restrictions on the time
step (see [36]). This aspect is improved in [9] by a switch of variable and through
a stabilized approach in [22]. Alternative approaches are the L-scheme (see [45,39,
33,29] and the modified L-scheme [30], both being robust w.r.t. the mesh size, but
converging linearly. In particular, the L-scheme converges for any starting point, and
the restriction on the time step, if any, is very mild. The modified L-scheme makes
explicit use of the choice of the starting point as the solution obtained at the previous
time, and has an improved convergence behavior if the changes in the solutions at
two successive times are controlled by the time step. Moreover, the robustness of
the Newton method is significantly increased if one considers combinations of the
Picard and the Newton methods [8], and in particular of the L-scheme and the Newton
scheme [29].

We conclude this discussion by mentioning that in this paper we adopt the FEM
and the MPFA, but the iterative schemes presented here can be applied in combina-
tion with any other spatial discretization method. The focus is on effectively solving
the fully coupled flow and transport system (1) – (2), and in particular on the ade-
quate treating of the coupling between the two model components (the flow and the
reactive transport). The schemes are divided in three main categories: monolithic
(MON), non-linear splitting (NonLinS) and alternate splitting (AltS). Subsequently,
we denote e.g. by MON-NE, the monolithic scheme obtained by applying the New-
ton method as linearization. The nonlinear splitting schemes (NonLinS) should be
understood as solving at each time step first the flow equation until convergence, by
using the surfactant concentration from the last iteration, and then with the obtained
flow solving the transport equation until convergence. The procedure can be conti-
nued iteratively, this being the usual or classical splitting method for transport pro-
blems. The convergence of NonLinS does not depend on the linearization approach
used for each model component (Newton, Picard or L−scheme), because we assume
that the nonlinear subproblems are solved exactly, i.e. until convergence. Finally, the
alternate splitting methods (AltS) have a different philosophy. Instead solving each
subproblem until convergence within each iteration, one performs only one step of
the chosen linearization. For example, AltS-NE will perform one Newton step for
each moel component, and iterate. These schemes are illustrated in Figures 1, 2.
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All the schemes can be analysed theoretically, and we do this exemplary for
MON-LS, i.e. for the monolithic approach combined with the L-scheme. Based on
comparative numerical tests performed for academic and benchmark problems, we
see that the alternate methods can save substantial computational time, while main-
taining the robustness of the L-scheme.

The remaining of the paper is organized as follows. In Section 2 we establish the
mathematical model and the notation used and present the iterative monolithic and
splitting schemes. In Section 3 we prove the convergence of the MON−LS scheme
and briefly discuss the convergence of the other schemes. Section 4 presents four
different numerical examples. They are inspired by the cases already studied in the
literature [29,26]. Section 5 concludes this work.

2 Problem formulation, discretization and iterative schemes

We solve the fully coupled system (1)–(2), completed by homogeneous Dirichlet
boundary conditions for both Ψ and c and the initial conditions:

Ψ =Ψ0 and c = c0 at t = 0.

We use the van Genuchten-Mualem parameterization [18]

θ(Ψ) =

θr +(θs−θr)
(

1
1+(−αΨ)n

) n−1
n
, Ψ ≤ 0

θs, Ψ > 0,
(3)

K(θ(Ψ)) =

Ksθ(Ψ)
1
2

[
1−
(

1−θ(Ψ)
n

n−1

) n−1
n
]
, Ψ ≤ 0

Ks, Ψ > 0,
(4)

where θr and θs represent the values of the residual and saturated water content, Ks
is the conductivity and α and n are model parameters depending on the soil.

Observe that in the expression above for θ the influence of the surfactant on the
water flow is neglected. As reported in [21,26,41], the surface tension between water
and air does depend on the surfactant concentration c, implying the same for the
function θ above. The following parametrization is proposed in [26]

θ(Ψ ,c) := θ

(
γ(c)

γ0(c0)
Ψ

)
, with

γ(c)
γ0(c0)

=
1

1−b log(c/a+1)
. (5)

Here γ and γ0 are the surface tensions at concentrations c and c0, the second being a
reference concentration. The parameters a and b depend on the fluid and the medium.
We refer to [40,41] for details about the scaling factor in (5).

This gives the following expressions for θ and K

θ(Ψ ,c) =

θr +(θs−θr)
[
1/
(

1+
(
−α( 1

1−b log(c/a+1) )Ψ
)n
)] n−1

n
, Ψ ≤ 0

θs, Ψ > 0,
(6)
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K(θ(Ψ ,c)) =

Ksθ(Ψ ,c)
1
2

[
1−
(

1−θ(Ψ ,c)
n

n−1

) n−1
n
]
, Ψ ≤ 0

Ks, Ψ > 0.
(7)

This shows that the flow component also depends on the reactive transport, implying
that the model is coupled in both way.

In the following we proceed by discretizing the equations (1) and (2) in time and
space. We will use common notations in functional analysis. We denote by L2(Ω)
the space of real valued, squared integrable function defined on Ω and H1(Ω) its
subspace, containing the functions having also the first order derivatives in L2(Ω).
H1

0 (Ω) is the space of functions belonging to H1(Ω) and vanishing on ∂Ω . Further,
we denote by < ·, ·> the L2(Ω) scalar product (and by ‖·‖ the associated norm) or the
pairing between H10 and its dual H−1. Finally, by L2(0,T ;X) we mean the Bochner
space of functions taking values in the Banach-space X , the extension to H1(0,T ;X)
being straightforward.

With this we state the weak formulation of the problem related to (1) – (2):
Problem P: Find Ψ ,c ∈ L2(0,T ;H1

0 (Ω))∩H1(0,T ;H−1(Ω)) such that

< ∂tθ(Ψ ,c),Φ1 >+< K(θ(Φ ,c))∇(Ψ + z),∇Φ1 >=< H1,Φ1 > (8)

and

< ∂t(θ(Ψ ,c)c),Φ2 >+< K(θ(Ψ ,c))D∇Ψ +uwc,∇Φ2 >=< H2,Φ2 > (9)

hold for all Φ1,Φ2 ∈ H1
0 (Ω) and almost every t ∈ (0,T ].

We now combine the backward Euler method with linear Galerkin finite ele-
ments for the discretization of PRoblem P. We let N ∈ N be a strictly positive na-
tural number and the time step τ := T/N. Correspondingly, the discrete times are
tn . = nτ (n ∈ 0,1, . . . ,N). Further, we let Th be a regular decomposition of Ω ,
Ω = ∪

T∈Th
T into d-dimensional simplices, with h denoting the maximal mesh dia-

meter. The finite element space Vh ⊂ H1
0 (Ω) is defined by

Vh := {vh ∈ H1
0 (Ω) s.t. vh|T ∈ P1(T ), for any T ∈ Th}, (10)

where P1(T ) denotes the space of linear polynomials on T and vh|T the restriction of
vh to T .

For the fully discrete counterpart of Problem P we let n≥ 1 be fixed and assume
that Ψ

n−1
h ,cn−1

h ∈Vh are given. The solution pair at time tn solves
Problem Pn: Find Ψ n

h ,c
n
h ∈Vh such that for all vh,wh ∈Vh there holds

< θ(Ψ n
h ,c

n
h)−θ(Ψ n−1

h ,cn−1
h ),vh >

+τ < K(θ(Ψ n
h ,c

n
h))(∇(Ψ n

h )+ ez),∇vh >= τ < H1,vh >
(11)

and

< θ(Ψ n
h ,c

n
h)c

n
h >−θ(Ψ n−1

h ,cn−1
h )cn−1

h ),wh >

+τ < D∇Ψh +un−1
w cn

h,∇wh >= τ < H2,wh > .
(12)

ez denotes the unit vector in the direction opposite to gravity.
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Remark 1 Observe that un−1
w appears in the convective term in (12). This choice is

made for the ease of presentation. Nevertheless, all calculations carried out in this
paper were doubled by ones where un

w has replaced un−1
w . The differences in the

results were marginal.

Observe that Problem Pn is a coupling system of two elliptic, nonlinear equations.
In the following we discuss different iterative schemes for solving this system.

2.1 Iterative linearization schemes

We discuss monolithic and splitting approaches for solving Problem Pn, combined
with either the Newton-method, or the modified Picard [11] or the L-scheme [33,29].
In the following the index n always refers to the time step, whereas j denotes the
iteration index. As a rule, the iterations start with the solution at the last time, tn−1.

In the monolithic approach one solves the two equations of the system (11)-(12)
at once, and combined with a linearization method. Formally, this becomes

Problem PMonn, j+1: Find Ψ n, j+1 and cn, j+1 such that{
F lin

1 (Ψ n, j+1,cn, j+1) = 0,
F lin

2 (Ψ n, j+1,cn, j+1) = 0.
(13)

FLin
k is a linearization of the expression Fk (k = 1,2) appearing in the system (11)-

(12). Depending on the used linearization technique, one speaks about a monolithic-
Newton scheme (Mon-Newton), or monolithic-Picard (Mon-Picard) or monolithic-
L-scheme (Mon-LS). These three schemes will be presented in detail below.

In the iterative splitting approach one solves each equation separately and then
iterates between these using the results obtained previously. We distinguish between
two main splitting ways: the nonlinear slitting and the alternate splitting. This is sche-
matized in Figure 1 and Figure 2 respectively. The former becomes

Problem PNonLinSn, j+1: Find Ψ n, j+1 and cn, j+1 such that{
F1(Ψ

n, j+1,cn, j) = 0, followed by
F2(Ψ

n, j+1,cn, j+1) = 0.
(14)

For the linearization of F1 and F2 one can use one of the three linearization techniques
mentioned before. In contrast, in the alternate splitting one performs only one linea-
rization step per iteration, see also Figure 2. The alternate splitting scheme becomes

Problem PAltSn, j+1: Find Ψ n, j+1 and cn, j+1 such that{
F lin

1 (Ψ n, j+1,cn, j) = 0, followed by
F lin

2 (Ψ n, j+1,cn, j+1) = 0.
(15)

Depending which linearization is used, one speaks about alternate splitting Newton
(AltS-NE) or alternate splitting L-scheme (AltS-LS). Both schemes are presented in
detail below.
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Fig. 1: The non-linear splitting approach

Fig. 2: The alternate splitting approach

2.1.1 The monolithic Newton method (Mon-Newton)

We recall that Newton scheme is quadratically, but only locally convergent. The
monolithic Newton method applied to (11)-(12) gives

Problem PMon-Newtonn, j+1: LetΨ
n−1

h ,cn−1,Ψ n, j
h ,cn, j

h ∈Vh be given, findΨ
n, j+1

h ,cn, j+1
h ∈

Vh such that for all vh,wh ∈Vh one has

< θ(Ψ n, j
h ,cn, j

h )−θ(Ψ n−1
h ,cn−1

h ),vh >+<
∂θ

∂Ψ
(Ψ n, j

h ,cn, j
h )(Ψ n, j+1

h −Ψ
n, j

h ),vh >

+τ < K(θ(Ψ n, j
h ,cn, j

h ))(∇(Ψ n, j+1
h )+ ez),∇vh >

+τ < K′(θ(Ψ n, j
h ,cn, j

h ))(∇(Ψ n, j+1
h )+ ez)(Ψ

n, j+1
h −Ψ

n, j
h ),∇vh >= τ < H,vh >

(16)
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and

< θ(Ψ n, j
h ,cn, j

h )cn, j+1
h −θ(Ψ n−1

h ,cn−1
h )cn−1

h ),wh >

+<
∂θ

∂c
(Ψ n, j

h ,cn, j
h )(cn, j+1

h − cn, j
h ),vh >

+ τ < D∇cn, j+1
h +un−1

w cn, j+1
h ,∇wh > = τ < Hc,wh > .

(17)

2.1.2 The monolithic Picard (Mon-Picard)

The modified Picard method was initially proposed by Celia [11] for the Richards
equation. It is similar to the Newton method in dealing with the nonlinearity in the
saturation, but not in the permeability. Being a modification of the Newton method,
modified Picard method is only linearly convergent [36]. The monolithic Picard met-
hod applied to (11)-(12) becomes

Problem PMon-Picardn, j+1: LetΨ
n−1

h ,cn−1
h ,Ψ n, j

h ,cn, j
h ∈Vh be given, findΨ

n, j+1
h ,cn, j+1

h ∈
Vh such that for all vh,wh ∈Vh one has

< θ(Ψ n, j
h ,cn, j

h )−θ(Ψ n−1
h ,cn−1

h ),vh >

+<
∂θ

∂Ψ
(Ψ n, j

h ,cn, j
h )(Ψ n, j+1

h −Ψ
n, j

h ),vh >

+τ < K(θ(Ψ n, j
h ,cn, j

h ))(∇(Ψ n, j+1
h )+ ez),∇vh > = τ < H,vh >

(18)

and

< θ(Ψ n, j
h ,cn, j

h )cn, j+1
h −θ(Ψ n−1

h ,cn−1
h )cn−1

h ),wh >

+<
∂θ

∂c
(Ψ n, j

h ,cn, j
h )(cn, j+1

h − cn, j
h ),wh >

+τ < D∇cn, j+1
h +un−1

w cn, j+1
h ,∇wh > = τ < Hc,wh > .

(19)

The equations (18) and (19) have been expressed as functions of only the unknown
pressure Ψ

n, j+1
h and concentration cn, j+1

h , respectively. To achieve this, in the former
we used only the derivative of θ with respect to Ψ and only the derivative of θ with
respect to c in the latter.

Alternatively, both of the partial derivatives can be involved in the formulation,

θ(Ψ n, j+1
h ,cn, j+1

h )→ θ(Ψ n, j
h ,cn, j

h )+
(

∂θ

∂Ψ

)
(Ψ n, j

h ,cn, j
h )(Ψ n, j+1

h −Ψ
n, j

h )

+
(

∂θ

∂c

)
(Ψ n, j

h ,cn, j
h )(cn, j+1

h − cn, j
h ).

(20)

2.1.3 The monolithic L-scheme (Mon-LS)

The monolithic L-scheme for solving (8–9) becomes
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Problem PMon-LSn, j+1: LetΨ
n−1

h ,Ψ n, j
h ,cn−1

h ,cn, j
h ∈Vh be given and with L1,L2 >

0 large enough (as sepcified below), find Ψ
n, j+1

h ,cn, j+1
h ∈Vh s.t. for all vh,wh ∈Vh

< θ(Ψ n, j
h ,cn, j

h )−θ(Ψ n−1
h ,cn−1

h ),vh >+L1 <Ψ
n, j+1

h −Ψ
n, j

h ,vh >

τ < K(θ(Ψ n, j
h ,cn, j

h ))(∇(Ψ n, j+1
h )+ ez),∇vh >= τ < H,vh >, and

(21)

< θ(Ψ n, j
h ,cn, j

h )cn, j+1
h −θ(Ψ n−1

h ,cn−1
h )cn−1

h ),wh >

+L2 < cn, j+1
h − cn, j

h ,wh >+τ < D∇c+un−1
w cn, j+1

h ,∇wh >

= τ < Hc,wh > .

(22)

L1 and L2 are free to be chosen parameters but should be large enough to ensure the
convergence of the scheme, see Sec. 3. In practice, the values of L1,L2 are connected

to max
Ψ

∥∥∥∥ ∂θ

∂Ψ

∥∥∥∥, max
c

∥∥∥∥∂θ

∂c

∥∥∥∥.

The L-scheme does not involve the computations of derivatives, and the linear
systems to be solved within each iteration are better conditioned compared to the ones
given by Newton or Picard method (see [29]). Moreover, this scheme is (linearly)
convergent for any initial guess for the iteration.

2.1.4 The non-linear splitting approach (NonLinS)

The non-linear splitting approach for solving (8–9) becomes
Problem PNonLinSn, j+1: Let Ψ

n−1
h ,cn−1,Ψ n, j

h ,cn, j
h ∈Vh be given, find Ψ

n, j+1
h ∈

Vh s.t.

< θ(Ψ n, j+1
h ,cn, j

h )−θ(Ψ n−1
h ,cn−1

h ),vh >

+τ < K(θ(Ψ n, j
h ,cn, j

h ))(∇(Ψ n, j+1
h )+ ez),∇vh >= τ < H,vh >

(23)

holds true for all vh ∈ Vh. Then, with Ψ
n, j+1

h obtained, find cn, j+1
h ∈ Vh such that for

all wh ∈Vh it holds

< θ(Ψ n, j+1
h ,cn, j+1

h )cn, j+1
h −θ(Ψ n−1

h ,cn−1
h )cn−1

h ),wh >+τ < D∇cn, j+1
h

+un−1
w cn, j+1

h ,∇wh > = τ < Hc,wh > .
(24)

As for the monolithic schemes, one can apply the different linear iterative schemes to
obtain fully linear versions of the splitting approach. This is done first to solve (23)
and, once a solution to (23) is available, this is employed in the linearization of (24).

2.1.5 The alternate Newton method (AltS-Newton)

In the alternate Newton method applied to (11)-(12) one solves
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Problem PAltS-Newtonn, j+1: LetΨ
n−1

h ,cn−1,Ψ n, j
h ,cn, j

h ∈Vh be given, findΨ
n, j+1

h ∈
Vh s.t.

< θ(Ψ n, j
h ,cn, j

h )−θ(Ψ n−1
h ,cn−1

h ),vh >

+< θ
′(Ψ n, j

h ,cn, j
h )(Ψ n, j+1

h −Ψ
n, j

h ),vh >+τ < K(θ(Ψ n, j
h ,cn, j

h ))(∇(Ψ n, j+1
h )

+ ez),∇vh >+τ < K′(θ(Ψ n, j
h ,cn, j

h ))(∇(Ψ n, j+1
h )

+ ez)(Ψ
n, j+1

h −Ψ
n, j

h ),∇vh >= τ < H,vh >

(25)

holds true for all vh ∈ Vh. Then, with Ψ
n, j+1

h obtained above, find cn, j+1
h ∈ Vh such

that for all wh ∈Vh one has

< θ(Ψ n, j+1
h ,cn, j

h )cn, j+1
h −θ(Ψ n−1

h ,cn−1
h )cn−1

h ),wh >

+< θ
′(Ψ n, j+1

h ,cn, j
h )(cn, j+1

h − cn, j
h ),vh >+τ < D∇cn, j+1

h

+un−1
w cn, j+1

h ,∇wh > = τ < Hc,wh > .

(26)

2.1.6 The alternate Picard (AltS-Picard)

The alternate Picard method applied to (11)-(12) becomes
Problem PAltS-Picardn, j+1: LetΨ

n−1
h ,cn−1,Ψ n, j

h ,cn, j
h ∈Vh be given, findΨ

n, j+1
h ∈

Vh s.t.

< θ(Ψ n, j
h ,cn, j

h )−θ(Ψ n−1
h ,cn−1

h ),vh >

+<
∂θ

∂Ψ
(Ψ n, j

h ,cn, j
h )(Ψ n, j+1

h −Ψ
n, j

h ),vh >

+τ < K(θ(Ψ n, j
h ,cn, j

h ))(∇(Ψ n, j+1
h )+ ez),∇vh > = τ < H,vh >

(27)

hold true for all vh ∈Vh. Then, with Ψ
n, j+1

h obtained above, find cn, j+1
h ∈Vh such that

for all wh ∈Vh one has

< θ(Ψ n, j+1
h ,cn, j

h )cn, j+1
h −θ(Ψ n−1

h ,cn−1
h )cn−1

h ),wh >

+<
∂θ

∂c
(Ψ n, j+1

h ,cn, j
h )(cn, j+1

h − cn, j
h ),wh >

+τ < D∇cn, j+1
h +un−1

w cn, j+1
h ,∇wh > = τ < Hc,wh > .

(28)

2.1.7 The alternate L-scheme (AltS-LS)

The alternate L-scheme for solving (8–9) becomes
Problem PAltS-LSn, j+1: Let Ψ

n−1
h ,cn−1,Ψ n, j

h ,cn, j
h ∈ Vh be given, find Ψ

n, j+1
h ∈

Vh s.t.

< θ(Ψ n, j
h ,cn, j

h )−θ(Ψ n−1
h ,cn−1

h ),vh >+L1 <Ψ
n, j+1

h −Ψ
n, j

h ,vh >

τ < K(θ(Ψ n, j
h ,cn, j

h ))(∇(Ψ n, j+1
h )+ ez),∇vh > = τ < H,vh >

(29)
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hold true for all vh ∈Vh. Then, with Ψ
n, j+1

h obtained above, find cn, j+1
h ∈Vh such that

for all wh ∈Vh one has

< θ(Ψ n, j+1
h ,cn, j

h )cn, j+1
h −θ(Ψ n−1

h ,cn−1
h )cn−1

h ),wh >

+L2 < cn, j+1
h −cn, j

h ,wh >+τ < D∇c+un−1
w cn, j+1

h ,∇wh >

= τ < Hc,wh > .

(30)

Remark 2 (Stopping criterion) For either monolithic or splitting schemes, one stops
the iteration process whenever∥∥∥Ψ n, j+1

h −Ψ
n, j

h

∥∥∥≤ ε1, and
∥∥∥cn, j+1

h − cn, j
h

∥∥∥≤ ε2,

where ε1,ε2 are small numbers. Here we took 10−07 or 10−08.

3 Convergence analysis

In this section we analyse the convergence of the monolithic L-scheme introduced
through Problem PMon-LSn, j+1. We restrict the analysis to this iteration, but mention
that the convergence analysis for the other (monolithic or splitting) schemes introdu-
ced above, can be done in a similar fashion. We start by defining the errors

e j+1
Ψ

:=Ψ
n, j+1

h −Ψ
n, j

h and e j+1
c := cn, j+1

h − cn, j
h , (31)

obtained at iteration j+1. The scheme is convergent if both errors vanish when j→
∞.

The convergence is obtained under the following assumptions:

(A1) There exist αΨ > 0 and αc ≥ 0 such that for any Ψ1,Ψ2 ∈ R and c1,c2 ∈ R+

< θ(Ψ1,c1)−θ(Ψ2,c2),Ψ1−Ψ2 >+< c1θ(Ψ1,c1)− c2θ(Ψ2,c2),c1− c2 >

≥ αΨ ‖θ(Ψ1,c1)−θ(Ψ2,c2)‖2 +αc ‖Ψ1−Ψ2‖2 .

(32)

Furthermore, there exist two constants θm≥ 0 and θM <∞ such that θm≤ θ ≤ θM .
(A2) The function K(θ(·, ·)) is Lipschitz continuous, with respect to both variables,

and there exist two constants Km and KM such that 0≤ Km ≤ K ≤ KM < ∞.
(A3) There exist Mu,MΨ ,Mc ≥ 0 such that

‖un
w‖L∞ ≤Mu, ‖∇Ψ n‖L∞ ≤MΨ and ‖cn‖L∞ ≤Mc for all n ∈ N.

Remark 3 (A2) is satisfied in most realistic situations. (A3) is a pure technical one,
being satisfied when data is sufficiently regular, which is assumed to be the case for
the present analysis. The inequality (32) in (A1) is a coercivity assumption. It is in
particular satisfied if Θ only depends on Ψ , and for common relationships Θ −−Ψ

encountered in the engineering literature.

Theorem 1 Let n ∈ {1,2, . . .N} be given and assume (A1)-(A3) be satisfied. If the
time step is small enough (see (42) below), the monolithic L-scheme in (29) and (30)
is linearly convergent for any L1 and L2 satisfying (41).



12 Davide Illiano et al.

Proof We follow the ideas in [33,29] and start by subtracting (11) from (29) to obtain
the error equation

< θ
n, j
h −θ

n
h ,vh >+L1 <Ψ

n, j+1
h −Ψ

n, j
h ,vh >

+τ < Kn, j
h ∇en, j+1

Ψ
,∇vh >+τ < (Kn, j−Kn)∇Ψ

n, j+1
h ,∇vh >

+τ < (Kn, j−Kn)ez,∇vh >= 0.

(33)

Testing now the above equation with vh = e j+1
Ψ

, one obtains

< θ
n, j
h −θ

n
h ,e

j+1
Ψ

>+L1 < e j+1
Ψ
− e j

Ψ
,e j+1

Ψ
>

+τ < Kn, j
∇en, j+1

Ψ
,∇e j+1

Ψ
>+τ < (Kn, j

h −Kn
h )∇Ψ

n, j+1
h ,∇e j+1

Ψ
>

+ τ < (Kn, j
h −Kn

h )ez,∇e j+1
Ψ

>= 0.

(34)

By (A2) and after some algebraic manipulations we further get

< θ
n, j
h −θ

n
h ,e

j
Ψ
>+

L1

2

∥∥∥e j+1
Ψ

∥∥∥2
+

L1

2

∥∥∥e j+1
Ψ
− e j

Ψ

∥∥∥2

+ τKm

∥∥∥∇e j+1
Ψ

∥∥∥2
≤ L1

2

∥∥∥e j
Ψ

∥∥∥2
−< θ

n, j
h −θ

n
h ,e

j+1
Ψ
− e j

Ψ
>

−τ < (Kn, j
h −Kn

h )∇Ψ
n, j+1

h ,∇e j+1
Ψ

>−τ < (Kn, j
h −Kn

h )ez,∇e j+1
Ψ

> .

(35)

Using now (A1), (A3), the Lipschitz continuity of K and twice the Young and Cauchy-
Schwarz inequalities, for any δ0 > 0 and δ1 > 0, from (35) one obtains

< θ
n, j
h −θ

n
h ,e

j
Ψ
>+

L1

2

∥∥∥e j+1
Ψ

∥∥∥2
+

L1

2

∥∥∥e j+1
Ψ
− e j

Ψ

∥∥∥2

+τKm

∥∥∥∇e j+1
Ψ

∥∥∥2
≤ L1

2

∥∥∥e j
Ψ

∥∥∥2
+

δ0

2

∥∥∥θ
n, j
h −θ

n
h

∥∥∥2
+

1
2δ0

∥∥∥e j+1
Ψ
− e j

Ψ

∥∥∥2

+
τ(M2

Ψ
+1)L2

k
2δ1

∥∥∥θ
n, j
h −θ

n
h

∥∥∥2
+ τδ1

∥∥∥∇e j+1
Ψ

∥∥∥2
.

(36)

Similarly, subtracting (12) from (30) and choosing wh = e j+1
c in the resulting one gets

< cn, j+1
h θ

n, j
h − cn

hθ
n
h ,e

j+1
c >+L2 < e j+1

c − e j
c,e

j+1
c >

+τ < D∇e j+1
c +un−1

w e j+1
c ,∇e j+1

c >= 0.
(37)

This can be rewritten as

< cn, j
h θ

n, j
h − cn

θ
n
h ,e

j
c >+< θ

n, j
h e j+1

c ,e j+1
c >+

L2

2

∥∥e j+1
c
∥∥2

+
L2

2

∥∥e j+1
c − e j

c
∥∥2

+ τD < ∇e j+1
c ,∇e j+1

c >=
L2

2

∥∥e j
c
∥∥2

+< θ
n
h cn

h−θ
n, j
h cn, j

h ,e j+1
c − e j

c >−τ < un−1
w e j+1

c ,∇e j+1
c > .

(38)
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Using again (A1), (A3) and the Cauchy-Schwarz and Young inequalities, from (38)
it follows that for any δ2,δ3,δ4 > 0 one has

< cn, j
h θ

n, j
h − cn

hθ
n
h ,e

j
c >+θm

∥∥e j+1
c
∥∥2

+
L2

2

∥∥e j+1
c
∥∥2

+
L2

2

∥∥e j+1
c − e j

c
∥∥2

+τD
∥∥∇e j+1

c
∥∥2 ≤ L2

2

∥∥e j
c
∥∥2

+
δ2

2

∥∥∥θ
n
h −θ

n, j
h

∥∥∥2
+

δ3

2

∥∥e j
c
∥∥2

+(
M2

c

2δ2
+

θ 2
M

2δ3
)
∥∥e j+1

c − e j
c
∥∥2

+ τ
M2

u

2δ4

∥∥e j+1
c
∥∥2

+ τ
δ4

2

∥∥∇e j+1
c
∥∥2

.

(39)

Summing adding (36) to (39) and using (A1) one gets

αΨ

∥∥∥θ
n
h −θ

n, j
h

∥∥∥2
+

L1

2

∥∥∥e j+1
Ψ

∥∥∥2
+

L1

2

∥∥∥e j+1
Ψ
− e j

Ψ

∥∥∥2
+ τKm

∥∥∥∇e j+1
Ψ

∥∥∥2

+αc
∥∥e j

c
∥∥2

+θm
∥∥e j+1

c
∥∥2

+
L2

2

∥∥e j+1
c
∥∥2

+
L2

2

∥∥e j+1
c − e j

c
∥∥2

+τD
∥∥∇e j+1

c
∥∥2 ≤ L1

2

∥∥∥e j
Ψ

∥∥∥2
+(

δ0

2
+

τ(M2
Ψ
+1)L2

k
2δ1

+
δ2

2
)
∥∥∥θ

n, j
h −θ

n
h

∥∥∥2
+

1
2δ0

∥∥∥e j+1
Ψ
− e j

Ψ

∥∥∥2
+ τδ1

∥∥∥∇e j+1
Ψ

∥∥∥2
+

L2

2

∥∥e j
c
∥∥2

+
δ3

2

∥∥e j
c
∥∥2

+(
M2

c

2δ2
+

θ 2
M

2δ3
)
∥∥e j+1

c − e j
c
∥∥2

+ τ
M2

u

2δ4

∥∥e j+1
c
∥∥2

+τ
δ4

2

∥∥∇e j+1
c
∥∥2

.

(40)

Choosing δ0 = δ2 =
αΨ

2
, δ1 =

Km

2
, δ3 = θm and δ4 =

D
2

in (40), and assuming that

L1 ≥
2

αΨ

and L2 ≥
2M2

c

αΨ

+
θ 2

M
θm

, (41)

and the time step τ satisfies the mild conditions

αΨ −2τ
τ(M2

Ψ
+1)L2

k
Km

≥ 0 and θm +2αc +
τD
CΩ

− 2τM2
u

D
≥ 0, (42)

where CΩ denotes the Poincare constant, then we obtain

L1

2

∥∥∥e j+1
Ψ

∥∥∥2
+ τ

Km

2

∥∥∥∇e j+1
Ψ

∥∥∥2
+(

L2

2
+θm− τ

M2
u

D
)
∥∥e j+1

c
∥∥2

+τ
D
2

∥∥∇e j+1
c
∥∥2 ≤ L1

2

∥∥∥e j
Ψ

∥∥∥2
+(

L2

2
+

θm

2
−αc)

∥∥e j
c
∥∥2

.

(43)

Finally, by using the Poincare inequality two times we get from (43)

(L1 + τ
Km

CΩ

)
∥∥∥e j+1

Ψ

∥∥∥2
+(L2 +2θm + τ

D
CΩ

−2τ
M2

u

D
)
∥∥e j+1

c
∥∥2

≤ L1

∥∥∥e j
Ψ

∥∥∥2
+(L2 +θm−2αc)

∥∥e j
c
∥∥2

.

(44)

From (42), (44) implies that the errors are contracting and therefore the monolithic
L-scheme (29) - (30) is convergent.
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Remark 4 The convergence rate resulting from (44) do not depend on the spatial
mesh size. Also observe that this convergence is obtained for any initial guess. Ba-
sed on this, the method is globallly convergent, which is in contrast to the Newton
or (modified) Picard schemes, converging only locally. It can be observed that, the
larger the time step, the smaller the constants L1 and L2 are, resulting in a faster con-
vergence. For small steps instead the convergence rate can approach 1. On the other
hand, if the time step is small enough, one may reach the regime where the Newton
scheme becomes convergent (see [36]). Alternatively, one may first perform a num-
ber of L-scheme iterations, and use the resulting as an initial guess for the Newton
scheme (see [29]), or consider the modified L-scheme in [30]. In either situations, the
convergence behavior was much improved.

Remark 5 The convergence of the modified Picard and Newton method applied to
the Richards equation has been already proved in [36]. Such results can be extended
to the coupled problems considered here.

4 Numerical examples

In this section we consider four test cases for the proposed linearization schemes,
inspired by the literature [29,26]. The schemes have been implemented in the open
source software package MRST [28], an open source toolbox based on Matlab, in
which multiple solvers and models regarding flows in porous media are incorporated.
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Fig. 3: Example 1A: pressure and concentration profiles at the final time T = 1. The
simulations were performed with dx = 1/80 and τ = 1/10

Example 1A: flow and transport in strictly unsaturated media

We start our numerical studies with a manufactured problem admitting an analytical
solution [29]. The unit square Ω is divided into two sub-domains: Ωup and Ωdown.
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Tmax 10 h
Ω [0,1]× [0,1]
LΨ .1
Lc .005

Van Genuchten parameters
θs .42
θr .0026
n 2.9
α .95
a .044
b .4745

Surface tension parameters
ζ 2.4901

σ0 73 mN/m
Ks .12 cm/min
D0 6.0e-04

Accuracy requirement
ε e-07

Table 1: Parameters involved in all the examples

The two regions are defined as: Ωup = [0,1]× [1/4,1] and Ωdown = [0,1]× [0,1/4].
Dirichlet boundary conditions, Ψ =−3, and no-flow Neumann boundary conditions
are imposed on ΓD = [0,1]×1 and ΓN = ∂Ω/ΓD, respectively. A constant initial pres-
sure p0

up = −2, and a non-constant p0
down = −y− 1/4 are defined in the upper and

in the lower part of the domain, Ωup and Ωdown. The van Genuchten parameters are
presented in Table 1.

Further, for both Richards and transport equations, we have a source term, f (x,y)=
.006cos(4/3πy)sin(x), on Ωup. No external forces or sources, are defined in the lo-
wer region, i.e. f = 0 on Ωdown. Finally, the initial condition for the concentration is
given by c0 = 1 and the boundary conditions by c|ΓD = 4.
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Monolithic NonLinS AltLinS
Newton Newton Newton

cond. # cond. #
dx # iterations condition # # iterations Richards Transport # iterations Richards Transport

1/10 20 511.0045 40 333.4035 5.9916 20 333.4019 5.9916
1/20 20 2.2933e+03 40 1.5040e+03 6.2079 20 1.5040e+03 6.2079
1/40 20 9.4458e+03 40 6.1312e+03 6.3234 20 6.1312e+03 6.3234
1/80 20 3.8371e+04 40 2.4774e+04 6.3816 20 2.4774e+04 6.3817

L Scheme L Scheme L Scheme
cond. # cond. #

dx # iterations condition # # iterations Richards Transport # iterations Richards Transport
1/10 277 183.4223 540 177.4742 2.1356 264 177.4725 2.1356
1/20 300 812.5650 650 796.5765 2.1839 316 796.5755 2.1839
1/40 363 3.3450e+03 750 3.2584e+03 2.2092 368 3.2584e+03 2.2092
1/80 510 1.3585e+04 850 1.3191e+04 2.2220 421 1.3191e+04 2.2220

Picard Picard Picard
cond. # cond. #

dx # iterations condition # # iterations Richards Transport # iterations Richards Transport
1/10 100 326.8280 40 177.4610 5.9916 20 177.4601 5.9916
1/20 110 1.4667e+03 40 796.5170 6.2079 20 796.5129 6.2079
1/40 120 6.0380e+03 40 3.2581e+03 6.3234 20 3.2581e+03 6.3234
1/80 130 2.4522e+04 40 1.3190e+04 6.3816 20 1.3190e+04 6.3817

Table 2: Example 1A: unsaturated medium, fixed τ = 1/10

Monolithic NonLinS AltLinS
Newton Newton Newton

cond. # cond. #
dt # iterations condition # # iterations Richards Transport # iterations Richards Transport

1/10 20 9.4458e+03 40 6.1312e+03 6.3234 20 6.1312e+03 6.3234
1/20 40 4.7275e+03 80 3.2581e+03 6.3234 40 3.2580e+03 6.3234
1/40 80 2.3677e+03 160 1.7024e+03 6.3234 80 1.7024e+03 6.3234
1/80 160 1.1876e+03 320 870.8016 6.3234 160 870.8010 6.3234

L Scheme L Scheme L Scheme
cond. # cond. #

dt # iterations condition # # iterations Richards Transport # iterations Richards Transport
1/10 363 3.3450e+03 750 3.2584e+03 2.2092 368 3.2584e+03 2.2092
1/20 570 1.7540e+03 1300 1.7026e+03 2.2092 633 1.7026e+03 2.2092
1/40 1048 898.9759 2160 870.2808 2.2092 1050 870.8979 2.2092
1/80 1914 455.3332 3520 440.6573 2.2092 1700 440.8161 2.2092

Picard Picard Picard
cond. # cond. #

dt # iterations condition # # iterations Richards Transport # iterations Richards Transport
1/10 120 6.0380e+03 40 3.2581e+03 6.3234 20 3.2581e+03 6.3234
1/20 220 3.0216e+03 80 1.7025e+03 6.3234 40 1.7025e+03 6.3234
1/40 400 1.5132e+03 160 870.8263 6.3234 80 870.8251 6.3234
1/80 640 758.9936 320 440.8018 6.3234 160 440.8015 6.3234

Table 3: Example 1A: unsaturated medium, fixed dx=1/40

We performed simulations using regular meshes, consisting of squares, whose si-
des were of length dx = [1/10, 1/20, 1/40, 1/80]. We consider also varying time
steps of sizes τ = [1/10, 1/20, 1/40, 1/80]. In Fig. 3a we are plotting the pressure
and concentration profiles at the final time T = 1. We point out that in this first exam-
ple we are always in the strictly unsaturated regime, implying that Richards equation
is a regular. All the proposed iterative schemes were converging for this example. In
Fig. 4 is given the total number of iterations for the different schemes.

More details regarding the total number of iterations and the condition number of
the linear systems are presented in Tables 2, 3. The condition number is computed at
the first iteration of each algorithm and with respect to the Euclidean norm. In Table
2, we fixed a time step τ = 1/10 and we investigated different mesh sizes, precisely
dx = [1/10,1/20,1/40,1/80]. In Table 3 we use a constant dx = 1/40 and varying
the time step sizes τ = [1/10,1/20,1/40,1/80]. We point out that the alternate sche-
mes are converging much faster than the classical ones. We also remark the high
differences in the condition numbers, the L−scheme based algorithms being much
better conditioned.
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Fig. 5: Example 1B: plots of pressure and concentration in the variably saturated
medium, the simulations were done with dx = 1/80 and dt = 1/10

Example 1B: flow and transport in variably saturated porous media

For the second example we use the same domain, mesh sizes, boundary conditions
and parameters, but we allow a saturated/unsaturated regime by changing the initial
condition for the pressure. We consider a subdivision of p0 between upper and lower
regions, precisely: p0

up = −2 and p0
down = −y+ 1/4. This new expression for p0

down
gives a positive pressure in the lower part of the domain (saturated region). For this
example the Richards equation is now degenerate parabolic, therefore more challen-
ging for the numerical schemes. Furthermore, we introduce this time also a reaction
term R(c) in the transport equation, given by R(c) := c/(1+ c).

At the iteration j+1, the term R(c) is linearized in the following way:

R(cn+1, j+1)→ 1+ cn+1, j+1

cn+1, j

In Fig. 10a we show again the pressure and concentration profiles at the final step
T = 1. The main differences to the previous example, i.e. Figure (3a) are in the values
of the pressure. We can observe again a discontinuity in the pressure profile but, more
importantly, it is evident a jump from negative to positive values. Such results were
expected considering the initial pressure imposed on the domain.

In Fig. 6 are presented the total number of iterations. We remark that in this case
only the L−scheme based algorithms are converging. It is also interesting to observe
that the difference in the number of iterations between the more commonly used
non-linear splitting approach (NonLinS) and alternate splitting (AltLinS) approach.
The alternate method appears to be a valid alternative to the common formulation. It
produces equally accurate results, requiring fewer iterations.

As for the previous example we present in the Tables 4, 5 the precise numbers
of iterations and condition numbers for each algorithm implemented for different
mesh diameters and time steps. Each segment (−) in the tables below, implies that
the method failed to converge for such particular combination of time step and space
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Fig. 6: Example 1B: numbers of iterations in the variably saturated porous medium

Monolithic NonLinS AltLinS
Newton Newton Newton

cond. # cond. #
dx # iterations condition # # iterations Richards Transport # iterations Richards Transport

1/10 28 2.2753e+11 50 5.7734e+09 1.1251 - 5.5783e+09 1.0117
1/20 - 1.2345e+12 - 4.6521e+09 1.0126 - .6521e+09 1.0126
1/40 - 4.5159e+12 - 5.2321e+09 1.0124 - 5.2321e+09 1.0124
1/80 - .7232e+13 - 5.5219e+09 1.0123 - 5.5219e+09 1.0123

L Scheme L Scheme L Scheme
cond. # cond. #

dx # iterations condition # # iterations Richards Transport # iterations Richards Transport
1/10 175 247.8672 440 239.2940 1.3314 264 239.8408 1.3314
1/20 314 1.0576e+03 650 1.0432e+03 1.3338 316 1.0432e+03 1.3338
1/40 352 4.2256e+03 750 4.1291e+03 1.3328 368 4.1291e+03 1.3328
1/80 408 1.6902e+04 910 1.6437e+04 1.3323 421 1.6437e+04 1.3323

Picard Picard Picard
cond. # cond. #

dx # iterations condition # # iterations Richards Transport # iterations Richards Transport
1/10 - 4.5478e+11 50 5.7735e+09 1.1251 - 5.5783e+09 .0117
1/20 - 2.4690e+12 - 4.6521e+09 1.0126 - 4.6521e+09 1.0126
1/40 - 9.0318e+12 - 5.2321e+09 1.0124 - 5.2321e+09 1.0124
1/80 - 3.4465e+13 - 5.5219e+09 1.0123 - 5.5219e+09 1.0123

Table 4: Example 1B: variably saturated medium, fixed τ = 1/10

mesh. As already observed in Fig. 6 the L-scheme based solvers are the only ones
converging in all cases. Moreover, the linear systems associated with the L-scheme
are better conditioned than the ones for Picard or Newton methods. We finally remark
that, as expected, for smaller time steps the Newton and Picard schemes converges,
see Table 5.

Example 2A: well in unsaturated porous media

Our next example is inspired from [26]. We consider same domain (e.g. the unit
square), boundary and initial condition and parameters as in the first numerical ex-
ample (1A). The medium is again strictly unsaturated. We include now, in the up-
per part of the domain, a well and inject water with a specific concentration of
the external component. No analytical solution is available for this case. Due to
the higher complexity of the problem we use more refined meshes, precisely dx =
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Monolithic NonLinS AltLinS
Newton Newton Newton

cond. # cond. #
dt # iterations condition # # iterations Richards Transport # iterations Richards Transport

1/10 - 4.5159e+12 - 5.2321e+09 1.0124 - 5.5783e+09 1.0117
1/20 - 4.5194e+12 - 2.1747e+10 1.0062 - 4.6521e+09 1.0126
1/40 80 4.5265e+12 200 1.0442 e+10 1.1325 - 5.2321e+09 1.0124
1/80 160 4.5406e+12 400 4.3494e+10 1.1325 - 5.5219e+09 1.0123

L Scheme L Scheme L Scheme
cond. # cond. #

dt # iterations condition # # iterations Richards Transport # iterations Richards Transport
1/10 352 4.2256e+03 750 4.1291e+03 1.3328 368 4.1291e+03 1.3328
1/20 627 2.2518e+03 1300 2.1862e+03 1.3328 633 2.1890e+03 1.3328
1/40 1100 1.1624e+03 2160 1.1258e+03 1.3328 1050 1.1266e+03 1.3328
1/80 1900 589.7690 3520 570.6119 1.3328 1700 571.0523 1.3328

Picard Picard Picard
cond. # cond. #

τ # iterations condition # # iterations Richards Transport # iterations Richards Transport
1/10 - 2.4690e+12 - 5.2321e+09 1.0124 - 5.2321e+09 1.0124
1/20 - 9.0388e+12 - 1.0442e+10 1.0062 - 1.0442e+10 1.0062
1/40 - 9.0529e+12 200 2.1748e+10 1.1325 - 2.0860e+10 1.0031
1/80 - 9.0811e+12 400 4.3494e+10 1.1325 - 4.1698e+10 1.0015

Table 5: Example 1B: variably saturated medium, fixed dx=1/40

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1
Pressure unsaturated domain

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

(a) Pressure profile at first time step

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1
Concentration unsaturated domain

1.0080885

1.008089

1.0080895

1.00809

1.0080905

1.008091

(b) Concentration profile at first time step

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1
Pressure unsaturated domain

-2.5

-2

-1.5

-1

-0.5

(c) Pressure profile after one day

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1
Concentration unsaturated domain

1.0934375

1.093438

1.0934385

1.093439

(d) Concentration profile after one day

Fig. 7: Example 2A: plots of pressure and concentration in unsaturated medium, the
simulations were done with dx = 1/100 and τ = dx

[1/50,1/100,1/150,1/200]. The pressure at the well is set to pW = −10 and the
concentration of the surfactant to cW = 10.

In Fig. 7, we present the different profiles of pressure and concentration at the
initial time t0 and at final time T = 1 day.



20 Davide Illiano et al.

50 100 150 200

1/dx

10
2

10
3

10
4

N
u

m
b

e
r 

o
f 

it
e
ra

ti
o

n
s

Total number of iterations

Mon-LS

Mon-Newton

Mon-Picard

NonLinS L-Scheme

NonLinS Newton

NonLinS Picard

AltS-LS

AltS-Newton

AltS-Picard

Fig. 8: Example 2A: Logarithmic plot of numbers of iterations in unsaturated porous
medium

Monolithic NonLinS AltLinS
Newton Newton Newton

cond. # cond. #
dx # iterations condition # # iterations Richards Transport # iterations Richards Transport

1/50 100 7.6243e+09 350 22.2624 3.3828e+09 200 22.1804 3.1779e+09
1/100 100 4.2369e+10 350 25.9419 5.2695e+10 200 31.8223 5.5839e+10
1/150 100 1.0394e+11 350 42.8667 2.8324e+11 200 33.0562 2.8324e+11
1/200 100 1.9614e+11 350 56.4999 9.1099e+11 200 42.8581 9.1662e+11

L Scheme L Scheme L Scheme
cond. # cond. #

dx # iterations condition # # iterations Richards Transport # iterations Richards Transport
1/50 2100 2.7971e+09 3700 4.2830 1.6426e+09 2400 4.2489 1.4735e+09
1/100 2100 2.5556e+10 3800 5.0706 2.6387e+10 2700 5.0005 2.6331e+10
1/150 2100 7.6270e+10 3900 6.3840 1.4791e+11 3100 6.3731 1.4165e+11
1/200 2100 1.3652e+11 4100 8.1437 4.5556e+11 3200 8.2452 4.5159e+11

Picard Picard Picard
cond. # cond. #

τ # iterations condition # # iterations Richards Transport # iterations Richards Transport
1/50 465 4.3612e+09 400 22.3247 1.7215e+09 200 22.1612 7.6372e+08
1/100 470 3.2796e+10 450 25.9427 2.6395e+10 200 26.0764 1.3243e+10
1/150 480 9.0401e+10 500 33.4899 1.4173e+11 200 33.0714 7.0961e+10
1/200 490 1.7576e+11 500 42.7698 4.5570e+11 200 42.737 2.2773e+11

Table 6: Example 2A: unsaturated medium, fixed τ = 1/50

Once more, in Fig. 8 we compare the different solving algorithms. We study the
numbers of iterations and the conditions numbers of the linearized systems. As for the
first example, the media being unsaturated, the Richards equation does not degenerate
and all the schemes converge. We can observe, in the Tables 6, 7, that the monolithic
Newton method is the fastest, in term of numbers of iterations. We remark that the
alternate splitting approach (AltLinS), once more, requires fewer iterations than the
classical splitting algorithm (NonLinS) for all of the linearization schemes. The li-
near systems resulting by applying the L-scheme based solvers are better conditioned
compared with the other solvers.
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Monolithic NonLinS AltLinS
Newton Newton Newton

cond. # cond. #
dt # iterations condition # # iterations Richards Transport # iterations Richards Transport

1/50 100 7.6243e+09 300 22.2624 3.3828e+09 200 22.1804 3.1779e+09
1/100 200 2.7797e+09 350 23.0671 8.0658e+08 400 22.9854 3.8663e+08
1/150 300 1.4883e+09 400 21.3871 3.8252e+08 600 21.9674 2.0727e+08
1/200 400 9.2045e+08 500 21.2462 1.9030e+08 800 21.3715 1.8499e+08

L Scheme L Scheme L Scheme
cond. # cond. #

dt # iterations condition # # iterations Richards Transport # iterations Richards Transport
1/50 2100 2.7971e+09 3700 4.2830 1.6426e+09 2400 4.2489 1.4735e+09
1/100 4100 8.0703e+08 7700 4.1966 3.6673e+08 4200 4.1408 1.8802e+08
1/150 5900 3.8356e+08 11250 4.1439 1.6219e+08 5800 4.1052 8.4601e+07
1/200 7700 2.2641e+08 14600 4.0893 9.1518e+07 7200 4.0870 4.7818e+07

Picard Picard Picard
cond. # cond. #

dt # iterations condition # # iterations Richards Transport # iterations Richards Transport
1/50 465 4.3612e+09 400 22.3247 1.7215e+09 200 22.1612 7.6372e+08
1/100 880 1.3673e+09 600 23.0000 1.9895e+08 400 21.5095 1.9878e+08
1/150 1300 6.6937e+08 900 22.4168 9.6242e+07 600 21.2971 8.8586e+07
1/200 1700 4.0868e+08 1200 21.2490 5.0376e+07 750 21.2490 5.0376e+07

Table 7: Example 2A: unsaturated medium, fixed dx=1/50
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Fig. 9: Example 2B: plots of pressure and concentration in unsaturated medium, the
simulations were done with dx = 1/80 and τ = dx/100

Example 2B: well in variably saturated porous media

Our last numerical example is obtained by changing the initial condition for pressure
in the example 2A. We use the same p0 as in example 1B. The profiles of pressure
and concentration at the beginning and end of the simulation, i.e. at T = 1 hour, are
presented in Fig. 11. We can observe smaller changes, compared to the previous ex-
ample, due to a smaller time interval (1 hour versus 1 day). In Fig. 11 we present the
total number of iterations for the different schemes applied to example 2B. Similar to
the example 1B, due to the degeneracy of the Richards equation, many of the conside-
red schemes show convergence problems. In the Tables 8,9 we study the convergence
of the schemes and the condition number of the associated linear systems. The results
are very similar with the previous examples, with the L-scheme based solvers being
the most robust one for all the cases and with the alternate method being faster than
the classical splitting schemes.
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Fig. 10: Example 2B: pressure and concentration profiles after one hour. The simula-
tions were done with dx = 1/80 and τ = dx/100
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Fig. 11: Example 2B: total number of iterations for different algorithms

Monolithic NonLinS AltLinS
Newton Newton Newton

cond. # cond. #
dx # iterations condition # # iterations Richards Transport # iterations Richards Transport

1/10 - 2.2435e+10 - 20.9641 3.2267e+08 - 20.9795 3.2267e+08
1/20 - 1.2309e+11 - 20.9642 5.3778e+08 - 20.9800 5.3778e+08
1/40 - 4.5128e+11 - 20.9644 1.2100e+09 - 20.9826 1.2100e+09

L Scheme L Scheme L Scheme
cond. # cond. #

dx # iterations condition # # iterations Richards Transport # iterations Richards Transport
1/10 10000 1.1768e+04 4000 5.000 6.2544e+03 3000 5.000 6.2544e+03
1/20 26000 2.5237e+04 16000 5.000 1.4067e+04 6000 5.000 1.4067e+04
1/40 - 5.1895e+04 44000 5.000 2.8441e+04 12000 5.000 2.8440e+04

Picard Picard Picard
cond. # cond. #

dx # iterations condition # # iterations Richards Transport # iterations Richards Transport
1/10 - 4.4870e+10 - 20.9641 3.2267e+08 - 20.9726 3.2267e+08
1/20 - 2.4617e+11 - 20.9642 5.3778e+08 - 20.9732 5.3778e+08
1/40 - 9.0255e+11 - 20.9644 1.2100e+09 - 20.9752 1.2100e+09

Table 8: Example 2B: variably saturated medium, fixed dt = dx/100
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Monolithic NonLinS AltLinS
Newton Newton Newton

cond. # cond. #
dt # iterations condition # # iterations Richards Transport # iterations Richards Transport

1/1000 - 2.2435e+10 - 20.9641 3.2267e+08 - 20.9795 3.2267e+08
1/2000 - 2.2444e+10 - 20.9641 6.4533e+08 - 20.9799 6.4533e+08
1/4000 - 2.2461e+10 20000 20.9640 1.2907e+09 - 20.9807 1.2907e+09

L Scheme L Scheme L Scheme
cond. # cond. #

dt # iterations condition # # iterations Richards Transport # iterations Richards Transport
1/1000 10000 1.1768e+04 4000 5.000 6.2544e+03 3000 5.000 6.2544e+03
1/2000 14000 5.9591e+03 6000 5.000 3.2036e+03 6000 5.000 3.2036e+03
1/4000 20000 3.0483e+03 12000 5.000 1.6697e+03 12000 5.000 1.6697e+03

Picard Picard Picard
cond. # cond. #

dt # iterations condition # # iterations Richards Transport # iterations Richards Transport
1/1000 - 4.4870e+10 - 20.9641 3.2267e+08 - 20.9726 3.2267e+08
1/2000 - 2.4617e+11 - 20.9642 6.4533e+08 - 20.9731 6.4533e+08
1/4000 - 9.0255e+11 - 20.9644 1.2907e+09 - 20.9739 1.2907e+09

Table 9: Example 2B: variably saturated medium, fixed dx=1/10

5 Conclusions

In this paper we considered surfactant transport in variably saturated porous me-
dia. The water flow and the transport are in this case fully coupled. Three lineariza-
tion techniques were considered: the Newton method, the modified Picard and the
L-scheme. Based on these, monolithic and splitting schemes were designed, analy-
zed and numerically tested. We conclude that the only quadratic convergent scheme is
the monolithic Newton, that the L-scheme based solvers are the most robust ones and
produce well-conditioned linear systems and that the alternative schemes are faster
than the classical splitting approaches.
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