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Abstract We analyse a fully discrete numerical scheme for the model describing two-phase
immiscible flow in porous media with dynamic effects in the capillary pressure. We employ the
Euler implicit method for the time discretization. The spatial discretization is based on the
mixed finite element method (MFEM). Specifically, the lowest order Raviart-Thomas elements
are applied. In this paper, the error estimates for the saturation, fluxes and phase pressures in
L∞(0, T ;L2(Ω)) are derived for the temporal and spatial discretization to show the convergence
of the scheme. Finally, we present some numerical results to support the theoretical findings.

Keywords Dynamic capillary pressure, Immiscible two-phase flow, Mixed finite elements,
Euler implicit method

1 Introduction

In this paper we consider the following model which is used to describe two-phase flow through
porous media incorporating dynamic capillarity effects ([33]):

∂ts−∇ · (ko(s)∇p̄) = 0, (1)

−∂ts−∇ · (kw(s)∇p) = 0, (2)

p̄− p = pc(s) + τ∂ts, (3)

complemented with suitable initial and boundary conditions. The equations hold in Q := (0, T ]×
Ω. Here Ω is a bounded domain in Rd (d ≥ 1), having Lipschitz continuous boundary, and T > 0
is a given maximal time. The unknowns are s, p̄ and p. In order to close the above system, we
prescribe the initial and boundary conditions

s(0, ·) = s0, in Ω, (4)

p̄ = p = 0, at ∂Ω for t > 0, (5)
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where s0 is a given function, which will be specified later.
The system (1) - (5) is obtained by including Darcy’s law in the mass conservation laws. The

mass conservation equations for the two phases are (see [5,34]):

φ
∂s

∂t
+∇ · q̄ = 0, (6)

φ
∂(1− s)

∂t
+∇ · q = 0. (7)

The coefficient φ represents the porosity of the medium, assumed to be constant in this case, s
denotes the nonwetting saturation, while q̄ and q denote the volumetric velocities of nonwetting
(e.g. oil) and wetting phases (e.g. water). The volumetric velocities q̄ and q are deduced from
the Darcy’s law (see [45]) as

q̄ = − k̄

µo
kro(s)∇p̄, (8)

.

q = − k̄

µw
krw(s)∇p, (9)

where k̄ is the absolute permeability of the porous medium, p̄ and p are the phase pressures,
µα (α ∈ {w, o}) the viscosities and krα (α ∈ {w, o}) the relative permeabilities. The specific
forms of the functions µα and krα (α ∈ {w, o}) are assumed to be known. Substituting (8) and
(9) in (6) and (7) gives

φ
∂s

∂t
−∇ ·

(
k̄kro
µo
∇p̄
)

= 0, (10)

−φ∂s
∂t
−∇ ·

(
k̄krw
µw
∇p
)

= 0. (11)

To close the model, we need a constitutive equation that relates the phase pressures p̄, p and
the nonwetting saturation s. Motivated by the experimental results in [6,16], Hassanizadeh and
Gray (see [33]) derived the following relation:

p̄− p = pc(s) + τ
∂s

∂t
, (12)

where τ denotes the dynamic capillary coefficient and pc represents the capillary pressure under
equilibrium conditions. The phase mobilities are given by

ko(s) :=
kro
µo

, kw(s) :=
krw
µw

.

The system (1) - (5) is derived from (10) - (12) by proper non-dimensionalization [42]. The
gravity term is not considered for the mathematical analysis but is included in the numerical
section.

Alternatively, if only equilibrium case is considered, the algebraic relationship between phase
pressures and saturation is written as

p̄− p = pc(s),

which is well known among standard models in porous media (see [5,34,40]). Numerical methods
for the standard models have been the subject of extensive research in the last decades. We
refer to [4,8,9,19,24,28,46,50,51,53], where finite element method, mixed finite element method,
discontinuous Galerkin method are analyzed, or linear iterative schemes are investigated. In [10,
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29,43], the authors analyze finite volume methods. The major challenge in developing efficient
numerical schemes is related to the degenerate nature of the problem. Due to this, the solution
typically lacks regularity, which makes lower order finite elements or finite volumes a natural
choice for the spatial discretization. In all cases, the convergence of the numerical schemes is
proved rigorously either by compactness arguments, or by obtaining a-priori error estimates.
A-posteriori error estimates are obtained e.g. in [10].

Under assuming that the total flow is known, the model can be reduced into a scalar model.
The existence and uniqueness of a weak solution for the model including the dynamic capillarity
model with τ > 0, is obtained in [11,30,41,44]. A travelling wave analysis has been given in [22,
23]. Numerical schemes for two phase flow through heterogeneous media are discussed in [35] for
cases without an entry pressure. For situations including an entry pressure, variational inequality
approaches have been considered in [36]. Further, we refer to [21] for coupling conditions between
heterogeneous blocks under the dynamic effect. In [35,47], the authors consider numerical algo-
rithms for unsaturated flow through highly heterogeneous media with dynamic effect. For the full
two-phase flow model, the existence and uniqueness of the weak solutions are proved in [39,12],
with the assumption that the equations are non-degenerate (i.e. all non-linearities are bounded
away from 0 or +∞). For this case, a finite volume-finite element method and two point flux
approximation are proposed in [17,18], a multipoint flux approximation finite volume method is
presented in [14] and a discontinuous Galerkin scheme is proposed in [37,38]. In addition, nu-
merical investigations for heterogeneous media have been given in [32]. For the degenerate case,
we refer to [13], which proves the existence of weak solutions for the model using an equivalent
formulation.

The rest of the paper is organized as follows. In Section 2, we present the notations and
assumptions on the data and the definition of the weak solution. We introduce the mixed formu-
lation and give error estimates for the saturation, phase pressures and fluxes in L∞(0, T ;L2(Ω))
for the mixed finite element scheme in Section 3. In the last section, we present some numerical
results that confirm the theoretically obtained analysis.

2 Notations and assumptions

In what follows, we use the standard notations of functional analysis and the theory of partial
differential equations. Throughout this paper, we assume the system is defined in a bounded
connected domain Ω ∈ Rd(d ≥ 1). For simplicity, one can assume that Ω is polygonal. Further-
more, by (·, ·), we denote the inner product on L2(Ω), and let ‖ · ‖, ‖ · ‖1 stand for the norms
in L2(Ω) and W 1,2(Ω), respectively. The functions in H(div;Ω) are vector valued, having a L2

divergence. By C we mean a generic positive constant, not depending on the unknowns or the
discretization parameters.

For the spatial discretization, let Th be a regular decomposition of Ω ∈ Rd into closed
d−simplices; h denoting the mesh diameter of the decomposition. Here we assume Ω̄ = ∪K∈ThK̄.
Correspondingly, the discrete subspaces Wh ⊂ L2(Ω) and Vh ⊂ H(div;Ω) are defined as:

Wh := {p ∈ L2(Ω)| p is constant on each element T ∈ Th},
Vh := {q ∈ H(div;Ω)| q|K(x) = a + bx,a ∈ Rd, b ∈ R for all K ∈ Th}.

In the following, we use the usual L2 projector:

Ph : L2(Ω)→Wh such that (Phw − w,wh) = 0, (13)

for all wh ∈Wh. Furthermore, on (W 1,2(Ω))d a projector Πh can be defined such that

Πh : (W 1,2(Ω))d → Vh, (∇ · (Πhv− v), wh) = 0, (14)
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for all wh ∈ Wh. Following [49], pp.237, this operator can be extended to H(div;Ω). For the
above operators there holds

‖w − Phw‖ ≤ Ch‖w‖1, (15)

‖v −Πhv‖ ≤ Ch‖v‖1, (16)

for any w ∈W 1,2(Ω) and v ∈ (W 1,2(Ω))d.
For the time discretization, let N ∈ N be strictly positive. Then we define the time step

∆t = T/N , as well as tn = n∆t (n ∈ {1, 2, ..., N}).
Throughout this paper, we use the following assumptions:

– (A1) Ω is an open, bounded and connected, convex polygonal domain in Rd (d ≥ 1) with
Lipschitz continuous boundary ∂Ω. Ω̄ denotes the closure of Ω.

– (A2) The functions ko(·), kw(·): R → R are C1 and Lipschitz continuous. There exist 0 <
δo, δw,Mo,Mw < ∞ such that δo ≤ ko(v) ≤ Mo and δw ≤ kw(v) ≤ Mw for all v ∈ R. We
assume ko(·) to be a non-decreasing function with ko(v) = δo for v ≤ 0 and ko(v) = Mo for
v ≥ 1. kw(·) is non-increasing with kw(v) = Mw for v ≤ 0 and kw(v) = δw for v ≥ 1.

– (A3) pc(·) : R→ R is an increasing function and pc ∈ C1. There exist mp,Mp > 0 such that

mp ≤ p
′

c(·) ≤Mp <∞.

– (A4) τ > 0 is a positive constant.

– (A5) The initial condition s0 in W 1,2
0 (Ω) and satisfies 0 ≤ s0 ≤ 1 a.e. .

– (A6) The wetting and nonwetting fluxes q̄ and q are bounded in L∞((0, T )×Ω), ‖q̄‖L∞((0,T )×Ω)

+ ‖q‖L∞((0,T )×Ω) ≤ C.

Remark 1 Here the assumption (A6) is reasonable if Ω is a C1,γ domain with 0 < γ ≤ 1and
if s0 ∈ C0,γ(Ω). The justification can be found in [11,13].

In the following, we define a weak solution of system (1) - (5).
Problem P Find (s, p̄, p) ∈ W 1,2(0, T ;L2(Ω)) × L2(0, T ;W 1,2

0 (Ω)) × L2(0, T ;W 1,2
0 (Ω)), with

s|t=0 = s0 such that for a.e. t ∈ [0, T ], one has

(∂ts, φ) + (ko(s)∇p̄,∇φ) = 0, (17)

−(∂ts, ψ) + (kw(s)∇p,∇ψ) = 0, (18)

(p̄− p, λ) = (pc(s), λ) + τ(∂ts, λ), (19)

for all φ ∈W 1,2
0 (Ω), ψ ∈W 1,2

0 (Ω) and λ ∈ L2(Ω).

Remark 2 In [41], the authors obtain higher regularity for the solution: ∂tts ∈ L2(0, T ;L2(Ω)), and
p̄, p ∈W 1,2(0, T ;W 1,2(Ω)). In [12], it is also showed s ∈W 1,2(0, T ;W 1,2(Ω)).

Remark 3 (Generality of the analysis) For the sake of simplicity, we have assumed homo-
geneous Dirichlet conditions at the boundary and neglected gravity and source terms in (1) and
(2) while analysing the problem in Section 3. However, the results obtained, hold for general
Dirichlet, Neumann, Robin and mixed type boundary conditions and they are valid even if grav-
ity terms and linear source terms are included. To show this, the numerical results are given for
more general boundary conditions are considered and gravity and source terms are added (see
(75)-(79)).
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3 Mixed formulation and error estimates

3.1 Existence and uniqueness

We now present a continuous mixed variational formulation for the model (1) - (5).
Problem 1 (Continuous Variational Formulation). Find (se, q̄e, p̄e,qe, pe) ∈W 1,2(0, T ;L2(Ω))×
L2(0, T ;H(div;Ω)) × L2(0, T ;L2(Ω)) ×L2(0, T ;H(div;Ω)) × L2(0, T ;L2(Ω)), with se|t=0 = s0

such that
(∂tse, w) + (∇ · q̄e, w) = 0, (20)

(k−1
o (se)q̄e,v)− (p̄e,∇ · v) = 0, (21)

−(∂tse, w) + (∇ · qe, w) = 0, (22)

(k−1
w (se)qe,v)− (pe,∇ · v) = 0, (23)

(p̄e − pe, w) = (pc(se), w) + τ(∂tse, w), (24)

for all w ∈ L2(Ω) and v ∈ H(div;Ω).
In the following, we discuss the existence and uniqueness of the continuous variational for-

mulations for the system (20) - (24). Since the existence and uniqueness of the model (17) - (19)
have been proved in [11–13,44], we follow the approach in [31,51,52] and show the equivalence
of Problem P and Problem 1.

Proposition 1 Let s ∈W 1,2(0, T ;L2(Ω)) and p̄, p ∈ L2(0, T ;W 1,2
0 (Ω)) solve Problem P. Define

(se, p̄e, pe) := (s, p̄, p), q̄e = −ko(se)∇p̄e and qe = −kw(se)∇pe. Then (se, q̄e, p̄e,qe, pe) solves
Problem 1. Conversely, if (se, q̄e, p̄e,qe, pe) solves Problem 1, then (s, p̄, p) := (se, p̄e, pe) is the
solution of Problem P.

Proof ” ⇒ ” By the definition of (se, p̄e, pe), it is easy to see that (se, p̄e, pe) has the regularity
required for solving Problem P: se ∈ W 1,2(0, T ;L2(Ω)), and p̄e, pe ∈ L2(0, T ;W 1,2

0 (Ω)). So, we
have ∂tse ∈ L2(0, T ;L2(Ω)). Then using (17) and by the definition of q̄e, one obtains

(∂tse, φ)− (q̄e,∇φ) = 0,

for any φ ∈ W 1,2
0 (Ω), which implies that ∇ · q̄e = −∂tse in distributional sense. The regularity

of ∂tse immediately implies q̄e ∈ H(div;Ω) which is required for Problem 1. Similarly, we also
have qe ∈ H(div;Ω).

” ⇐ ” Clearly, if (se, q̄e, p̄e,qe, pe) solves Problem 1, then we have se ∈ W 1,2(0, T ;L2(Ω))
and p̄e ∈ L2(0, T ;L2(Ω)), which imply s ∈ W 1,2(0, T ;L2(Ω)) and p̄ ∈ L2(0, T ;L2(Ω)). Taking
v ∈ (C∞0 (Ω))d ⊂ H(div;Ω) in (21), one has

(∇p̄e,v) = −(k−1
o (se)q̄e,v), (25)

which gives ∇p̄e = −k−1
o (se)q̄e in distributional sense. Further, since se ∈ W 1,2(0, T ;L2(Ω))

and q̄e ∈ L2(0, T ;H(div), Ω), one obtains p̄e ∈ L2(0, T ;W 1,2(Ω)). Next, we show that p̄e has
vanishing trace at the boundary of Ω. Taking v ∈ H(div;Ω) and applying (21) and (25), one has

(∇p̄e,v) = −(k−1
o (se)q̄e,v) = −(p̄e,∇ · v).

By using Green theorem for any v ∈ H(div;Ω), we have∫
∂Ω

p̄ev · ndγ =

∫
Ω

v · ∇p̄e +

∫
Ω

p̄e∇ · v = 0.

It follows that p̄e ∈ L2(0, T ;W 1,2
0 (Ω)), which implies p̄ ∈ L2(0, T ;W 1,2

0 (Ω)). By the same argu-
ments, we have p ∈ L2(0, T ;W 1,2

0 (Ω)).
Similarly, taking w ∈W 1,2

0 (Ω) ⊂ L2(Ω) in (20) and using (21), one gets that p̄ satisfies (17).
p̄ and p satisfying (19) can be obtained directly from (24).
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We now proceed to the time discretization for Problem 1, which is achieved by the Euler
implicit scheme. For a given n ∈ {1, 2, ..., N}, we define the time discrete mixed variational
problem at time tn. We will show the existence and uniqueness of the solution to the time
discrete mixed variational problem. To do so, first we give the discrete form of Problem P.
Problem Pn Find (sn, p̄n, pn) ∈ L2(Ω)×W 1,2

0 (Ω)×W 1,2
0 (Ω), with sn−1 ∈ L2(Ω) such that

(
sn − sn−1

∆t
, φ) + (ko(s

n)∇p̄n,∇φ) = 0, (26)

−(
sn − sn−1

∆t
, ψ) + (kw(sn)∇pn,∇ψ) = 0, (27)

(p̄n − pn, λ) = (pc(s
n), λ) + τ(

sn − sn−1

∆t
, λ), (28)

for all φ, ψ ∈W 1,2
0 (Ω) and λ ∈ L2(Ω).

Problem 2 (Semi-discrete Variational Formulation). Find (sne , q̄
n
e , p̄

n
e ,q

n
e , p

n
e ) ∈ L2(Ω)×H(div;Ω)

×L2(Ω)×H(div;Ω)× L2(Ω), with sn−1
e ∈ L2(Ω) such that

(
sne − sn−1

e

∆t
,w) + (∇ · q̄ne , w) = 0, (29)

(k−1
o (sne )qne ,v)− (p̄ne ,∇ · v) = 0, (30)

−(
sne − sn−1

e

∆t
,w) + (∇ · qne , w) = 0, (31)

(k−1
w (sne )qne ,v)− (pne ,∇ · v) = 0, (32)

(p̄ne − pne , w) = (pc(s
n
e ), w) + τ(

sne − sn−1
e

∆t
,w), (33)

for all w ∈ L2(Ω) and v ∈ H(div;Ω).
Similar to Proposition 1 we have the following proposition:

Proposition 2 Let n ∈ N, n ≥ 1, sn−1 ∈ L2(Ω) be given. If (sn, p̄n, pn) ∈ L2(Ω) ×W 1,2
0 (Ω) ×

W 1,2
0 (Ω) is a solution of Problem Pn, then a solution to Problem 2 is given by sne := sn, p̄ne :=

p̄n, q̄ne = −ko(sne )∇p̄ne , pne := pn, qne = −kw(sne )∇p̄ne . Conversely, if (sne , q̄
n
e , p̄

n
e ,q

n
e , p

n
e ) solves

Problem 2, then (sn, p̄n, pn) := (sne , p̄
n
e , p

n
e ) is a solution of Problem Pn.

Proof The proof of Proposition 2 is similar to the proof of Proposition 1 (see also [50,51]). We
therefore omit it here.

From [12], and Proposition 2 the existence of a solution to Problem 2 is obtained. However, the
uniqueness is left open. This is present below

Lemma 1 Let n ∈ N, n ≥ 1 be fixed. Assume that (A2)-(A4) and (A6) holds. For the time
step ∆t small enough, Problem 2 has at most one solution.

Proof Assuming there are two solutions to Problem 2 denoted by (sne1, q̄
n
e1, p̄

n
e1,q

n
e1, p

n
e1) and

(sne2, q̄
n
e2, p̄

n
e2,q

n
e2, p

n
e2) for a given sn−1

e ∈ L2(Ω), one has

(sne1 − sne2, w) +∆t
(
∇ · (q̄ne1 − q̄ne2), w

)
= 0, (34)

(k−1
o (sne1)q̄ne1 − k−1

o (sne2)q̄ne2,v)− (p̄ne1 − p̄ne2,∇ · v) = 0, (35)

−(sne1 − sne2, w) +∆t
(
∇ · (qne1 − qne2), w

)
= 0, (36)
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(k−1
w (sne1)qne1 − k−1

w (sne2)qne2,v)− (pne1 − pne2,∇ · v) = 0, (37)

(p̄ne1 − p̄ne2 − pne1 + pne2, w) =
(
pc(s

n
e1)− pc(sne2), w

)
+

τ

∆t
(sne1 − sne2, w) = 0, (38)

for any w ∈ L2(Ω) and v ∈ H(div;Ω).
First, we set w = p̄ne1 − p̄ne2 in (34) and v = ∆t(q̄ne1 − q̄ne2) in (35). Adding the results gives

(sne1 − sne2, p̄ne1 − p̄ne2) +∆t(k−1
o (sne1)q̄ne1 − k−1

o (sne2)q̄ne2, q̄
n
e1 − q̄ne2) = 0. (39)

Similarly, taking w = pne1 − pne2 in (36) and v = ∆t(qne1 − qne2) in (37) and adding the results
yields

−(sne1 − sne2, pne1 − pne2) +∆t(k−1
w (sne1)qne1 − k−1

w (sne2)qne2,q
n
e1 − qne2) = 0. (40)

Adding (39) and (40), we have

(p̄ne1 − p̄ne2 − pne1 + pne2, s
n
e1 − sne2) +∆t(k−1

o (sne1)q̄ne1 − k−1
o (sne2)q̄ne2, q̄

n
e1 − q̄ne2)

+∆t(k−1
w (sne1)qne1 − k−1

w (sne2)qne2,q
n
e1 − qne2) = 0. (41)

Take w = sne1 − sne2 in (38), one obtains

(p̄ne1 − p̄ne2 − pne1 + pne2, s
n
e1 − sne2) =

(
pc(s

n
e1)− pc(sne2), sne1 − sne2

)
+

τ

∆t
‖sne1 − sne2‖2. (42)

Substituting (42) into (41) gives

τ

∆t
‖sne1 − sne2‖2 +

(
pc(s

n
e1)− pc(sne2), sne1 − sne2

)
+∆t(k−1

o (sne1)q̄ne1 − k−1
o (sne2)q̄ne2, q̄

n
e1 − q̄ne2) +∆t(k−1

w (sne1)qne1 − k−1
w (sne2)qne2,q

n
e1 − qne2) = 0.

(43)

Using (A2) and (A3), (43) gives

τ

∆t
‖sne1 − sne2‖2 +mp‖sne1 − sne2‖2 +

∆t

Mo
‖q̄ne1 − q̄ne2‖2 +

∆t

Mw
‖qne1 − qne2‖2

≤−∆t
(

(k−1
o (sne1)− k−1

o (sne2))q̄ne1, q̄
n
e1 − q̄ne2

)
−∆t

(
(k−1
w (sne1)− k−1

w (sne2))qne1,q
n
e1 − qne2

)
.

Using (A6), the first term of the right hand side can be estimated as

−∆t
(

(k−1
o (sne1)− k−1

o (sne2))q̄ne1, q̄
n
e1 − q̄ne2

)
≤ ∆t‖q̄ne1‖L∞((0,T )×Ω)

(
|k−1
o (sne1)− k−1

o (sne2)|, |q̄ne1 − q̄ne2|
)

≤ ∆t

2
Mo‖q̄ne1|2L∞((0,T )×Ω)‖k

−1
o (sne1)− k−1

o (sne2)‖2 +
∆t

2Mo
‖q̄ne1 − q̄ne2‖2

≤
∆tMoL

2
ko

2δ4
o

‖q̄ne1‖2L∞((0,T )×Ω)‖s
n
e1 − sne2‖2 +

∆t

2Mo
‖q̄ne1 − q̄ne2‖2.

Here Lko is the Lipschitz constant of ko and Young’s inequality (see (49)) has been used. A
similar estimate can be obtained for the term with kw. Hence, a constant C > 0 exists such that

(
τ

∆t
+mp − C∆t)‖sne1 − sne2‖2 +

∆t

2Mo
‖q̄ne1 − q̄ne2‖2 +

∆t

2Mw
‖qne1 − qne2‖2 ≤ 0,

which implies that sne1 = sne2, q̄ne1 = q̄ne2 and qne1 = qne2 a.e. for ∆t sufficiently small. Substitution
of this into (35) and (37) concludes the proof.
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For the ease of presentation, in the following we omit the subscript in (20) - (24). The fully
discrete mixed scheme for the system is given by the following discrete variational formulation:
Problem 3 (Discrete Variational Formulation). Let n ∈ {1, ..., N} and sn−1

h ∈ Wh be given.
Find (snh, q̄

n
h, p̄

n
h,q

n
h, p

n
h) ∈Wh × Vh ×Wh × Vh ×Wh such that

(
snh − s

n−1
h

∆t
,wh) + (∇ · q̄nh, wh) = 0, (44)

(k−1
o (snh)q̄nh,vh)− (p̄nh,∇ · vh) = 0, (45)

−(
snh − s

n−1
h

∆t
,wh) + (∇ · qnh, wh) = 0, (46)

(k−1
w (snh)qnh,vh)− (pnh,∇ · vh) = 0, (47)

(p̄nh − pnh, wh) = (pc(s
n
h), wh) + τ(

snh − s
n−1
h

∆t
,wh), (48)

for all wh ∈Wh and vh ∈ Vh. We take at time t = 0: s0
h = Phs

0.

Proof The existence of the solution to Problem 3 is a consequence of 2 in [12], while the uniqueness
of the solution can be proved as in Lemma 1 above.

3.2 Error estimates

In the following analysis, we will use the Young’s inequality

ab ≤ 1

2δ
a2 +

δ

2
b2, for any a, b ∈ R and δ > 0. (49)

We use the following identity, valid for any two families of real vectors ak,bk ∈ Rm (m ≥ 1)

N∑
k=1

(ak − ak−1,ak) =
1

2
(|aN |2 − |a0|2 +

N∑
k=1

|ak − ak−1|2). (50)

Furthermore, we also will use the discrete version of Gronwall’s inequality (see [46])

Lemma 2 Discrete Gronwall inequality: If {yn}, {fn} and {gn} are nonnegative sequences
and

yn ≤ fn +
∑

0≤k<n

gkyk, for all n ≥ 0,

then
yn ≤ fn +

∑
0≤k<n

fkgk exp(
∑

k<j<n

gj), for all n ≥ 0.

Finally, recall the following result from [54]

Lemma 3 If the domain Ω is convex, for any fh ∈Wh, a vh ∈ Vh exists such that

∇ · vh = fh, and ‖vh‖ ≤ CΩ‖fh‖, (51)

where the constant CΩ does not depend on fh.

Now we give the convergence result, base on error estimates. To this aim we use the notations

ens = s(tn)− snh, enq̄ = q̄(tn)− q̄nh, enq = q(tn)− qnh, enp̄ = p̄(tn)− p̄nh, enp = p(tn)− pnh.
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Theorem 1 Let (s, q̄, p̄,q, p) solve Problem 1 and (snh, q̄
n
h, p̄

n
h,q

n
h, p

n
h), n ∈ {1, ..., N} solve Prob-

lem 3. Assuming that (A1) - (A6) hold, with ∆t small enough we have for any n ∈ {1, ..., N},

‖en‖2 := ‖ens ‖2 + ‖enq̄‖2 + ‖enq‖2 + ‖enp̄‖2 + ‖enp‖2 ≤ C(∆t2 + h2),

with the constant C not depending on ∆t or h.

Proof By subtracting (20) - (24) from (44) - (48), respectively, we obtain(
∂ts−

snh − s
n−1
h

∆t
,wh

)
+
(
∇ · (q̄(tn)− q̄nh), wh

)
= 0, (52)

(
k−1
o (s(tn))q̄(tn)− k−1

o (snh)q̄nh,vh

)
−
(
p̄(tn)− p̄nh,∇ · vh

)
= 0, (53)

−

(
∂ts−

snh − s
n−1
h

∆t
,wh

)
+
(
∇ · (q(tn)− qnh), wh

)
= 0, (54)

(
k−1
w (s(tn))q(tn)− k−1

w (snh)qnh,vh

)
−
(
p(tn)− pnh,∇ · vh

)
= 0, (55)

(
p̄(tn)− p̄nh − p(tn) + pnh, wh

)
=
(
pc(s(t

n))− pc(snh), wh

)
+ τ

(
∂ts−

snh − s
n−1
h

∆t
,wh

)
, (56)

for all wh ∈ Wh and vh ∈ Vh. Using the properties of the projectors Πh and Ph, the above
equations become (

∂ts−
snh − s

n−1
h

∆t
,wh

)
+
(
∇ · (Πhq̄(tn)− q̄nh), wh

)
= 0, (57)

(
k−1
o (s(tn))q̄(tn)− k−1

o (snh)q̄nh,vh

)
−
(
Php̄(t

n)− p̄nh,∇ · vh
)

= 0, (58)

−

(
∂ts−

snh − s
n−1
h

∆t
,wh

)
+
(
∇ · (Πhq(tn)− qnh), wh

)
= 0, (59)

(
k−1
w (s(tn))q(tn)− k−1

w (snh)qnh,vh

)
−
(
Php(t

n)− pnh,∇ · vh
)

= 0, (60)

(
Php̄(t

n)− p̄nh −Php(tn) + pnh, wh

)
=
(
pc(s(t

n))− pc(snh), wh

)
+ τ

(
∂ts−

snh − s
n−1
h

∆t
,wh

)
. (61)

Taking wh = Php̄(t
n)− p̄nh in (57) and vh = Πhq̄(tn)− q̄nh in (58), adding the results, we obtain(

∂ts−
snh − s

n−1
h

∆t
, Php̄(t

n)− p̄nh

)
+
(
k−1
o (s(tn))q̄(tn)− k−1

o (snh)q̄nh, Πhq̄(tn)− q̄nh

)
= 0. (62)

Similarly, setting wh = Php(t
n)− pnh in (59), and vh = Πhq(tn)− qnh in (60) we have

−

(
∂ts−

snh − s
n−1
h

∆t
, Php(t

n)− pnh

)
+
(
k−1
w (s(tn))q(tn)− k−1

w (snh)qnh, Πhq(tn)− qnh

)
= 0.

(63)
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Adding (62) and (63) gives(
∂ts−

snh − s
n−1
h

∆t
, Php̄(t

n)− p̄nh − Php(tn) + pnh

)
+
(
k−1
o (s(tn))q̄(tn)− k−1

o (snh)q̄nh, Πhq̄(tn)− q̄nh

)
+
(
k−1
w (s(tn))q(tn)− k−1

w (snh)qnh, Πhq(tn)− qnh

)
= 0. (64)

Taking wh = Php̄(t
n)− p̄nh − Php(tn) + pnh in (61), one has(

∂ts−
snh − s

n−1
h

∆t
, Php̄(t

n)− p̄nh − Php(tn) + pnh

)

=
1

τ
‖Php̄(tn)− p̄nh − Php(tn) + pnh‖2

−1

τ

(
pc(s(t

n))− pc(snh), Php̄(t
n)− p̄nh − Php(tn) + pnh

)
. (65)

This gives

1

τ
‖Php̄(tn)− p̄nh − Php(tn) + pnh‖2 −

1

τ

(
pc(s(t

n))− pc(snh), Php̄(t
n)− p̄nh − Php(tn) + pnh

)
+
(
k−1
o (s(tn))q̄(tn)− k−1

o (snh)q̄nh, Πhq̄(tn)− q̄nh

)
+
(
k−1
w (s(tn))q(tn)− k−1

w (snh)qnh, Πhq(tn)− qnh

)
= 0. (66)

Then we have by (A3)

1

2τ
‖Php̄(tn)− p̄nh − Php(tn) + pnh‖2 +

(
k−1
o (s(tn))q̄(tn)− k−1

o (snh)q̄nh, Πhq̄(tn)− q̄nh

)
+
(
k−1
w (s(tn))q(tn)− k−1

w (snh)qnh, Πhq(tn)− qnh

)
≤ C‖s(tn)− snh‖2. (67)

For (67), doing some manipulations, we have

1

2τ
‖Php̄(tn)− p̄nh − Php(tn) + pnh‖2

+
((
k−1
o (s(tn))− k−1

o (snh)
)
q̄(tn), enq̄

)
+
((
k−1
o (s(tn))− k−1

o (snh)
)
q̄(tn), Πhq̄(tn)− q̄(tn)

)
+
(
k−1
o (snh)enq̄, e

n
q̄

)
+
(
k−1
o (snh)enq̄, Πhq̄(tn)− q̄(tn)

)
+
((
k−1
w (s(tn))− k−1

w (snh)
)
q(tn), enq

)
+
((
k−1
w (s(tn))− k−1

w (snh)
)
q(tn), Πhq(tn)− q(tn)

)
+
(
k−1
w (snh)enq, e

n
q

)
+
(
k−1
w (snh)enq, Πhq(tn)− q(tn)

)
≤ C‖ens ‖2.

We name the terms T1, T2, T3, T4, T5, T5, T6, T7, T8, T9, T10 from left to right. Obviously, T1 ≥ 0.
Then by using (49), Cauchy-Schwarz inequality, (A2) and (A6), we obtain similar to the proof
of Lemma 1,

|T2| =
∣∣∣((k−1

o (s(tn))− k−1
o (snh))q̄(tn), enq̄

)∣∣∣ ≤ C‖ens ‖2 +
δ2
2
‖enq̄‖2,
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for any δ2 > 0. Similarly, for T3 there holds

|T3| =
∣∣∣((k−1

o (s(tn))− k−1
o (snh)

)
q̄(tn), Πhq̄(tn)− q̄(tn)

)∣∣∣
≤ C(‖ens ‖2 + ‖q̄(tn)−Πhq̄(tn)‖2).

Then using the boundedness of the hydraulic conductivity ko, we get for T4

T4 = (k−1
o (snh)enq̄, e

n
q̄) ≥ 1

Mo
‖enq̄‖2.

For the term T5 we use the boundedness of the hydraulic conductivity ko and the inequality of
(49) and Cauchy-Schwarz inequality

|T5| =
∣∣∣(k−1

o (snh)enq̄, Πhq̄(tn)− q̄(tn)
)∣∣∣

≤ δ5
2
‖enq̄‖2 + C‖q̄(tn)−Πhq̄

n‖2, (68)

for any δ5 > 0. Similarly, we estimate the terms T6 , T7, T8 and T9 as

|T6| =
∣∣∣((k−1

w (s(tn))− k−1
w (snh))q̄(tn), enq̄

)∣∣∣ ≤ C‖ens ‖2 +
δ6
2

N∗∑
n=1

‖enq̄‖2,

|T7| =
∣∣∣((k−1

w (s(tn))− k−1
w (snh)

)
q(tn), Πhq(tn)− q(tn)

)∣∣∣ ≤ C(‖ens ‖2 + ‖q(tn)−Πhq(tn)‖2),

T8 = (k−1
w (snh)enq, e

n
q) ≥ 1

Mw
‖enq‖2,

|T9| =
∣∣∣(k−1

w (snh)enq, Πhq(tn)− q(tn)
)∣∣∣ ≤ δ9

2
‖enq‖2 + C‖q(tn)−Πhq

n
h‖2.

We gather T1 to T10 and choose δ2, δ5, δ6 and δ9 properly to have

‖enq̄‖2 + ‖enq‖2 ≤ C(‖ens ‖2 + ‖q̄(tn)−Πhq̄
n
h‖2 + ‖q(tn)−Πhq

n
h‖2). (69)

Furthermore, taking ∇ · vh = Php̄(t
n)− p̄nh in (53) and applying Lemma 3 we obtain

‖p̄(tn)− p̄nh‖2 =
(
k−1
o (s(tn))q̄(tn)− k−1

o (snh)q̄nh,vh
)
−
(
p̄(tn)− p̄nh, Php̄(tn)− p̄(tn)

)
≤ C

(
‖ens ‖+ ‖enq̄‖

)
‖Php̄(tn)− p̄nh‖+ ‖p̄(tn)− p̄nh‖‖Php̄(tn)− p̄(tn)‖

≤ C
(
‖ens ‖2 + ‖enq̄‖2

)
+

3

2
‖Php̄(tn)− p̄(tn)‖2 +

3

4
‖p̄(tn)− p̄nh‖2, (70)

which gives by applying (15)

‖enp̄‖2 = ‖p̄(tn)− p̄nh‖2 ≤ C
(
‖ens ‖2 + ‖enq̄‖2 + h2

)
. (71)

Similarly, by taking ∇ · vh = Php(t
n)− pnh in (55), one also has

‖enp‖2 = ‖p(tn)− pnh‖2 ≤ C
(
‖ens ‖2 + ‖eq

n‖2 + h2
)
. (72)
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Setting wh = Phs(t
n) − snh in (61) and summing up results from n = 1 to N∗, N∗ ∈ {1, ..., N},

and doing some manipulations, we have

N∗∑
n=1

(
∂ts−

s(tn)− s(tn−1)

∆t
, ens

)

+
N∗∑
n=1

(
∂ts−

snh − s
n−1
h

∆t
, Phs(t

n)− s(tn)

)
+

N∗∑
n=1

(
s(tn)− s(tn−1)− snh + sn−1

h

∆t
, ens

)

=
1

τ

N∗∑
n=1

(
Php̄(t

n)− p̄nh − Php(tn) + pnh, Phs(t
n)− snh

)
− 1

τ

N∗∑
n=1

(
pc(s(t

n))− pc(snh), Phs(t
n)− snh

)
.

We proceed as before, denoting the terms by S1, S2, S3, S4, S5, S5. Then we have

S1 + S2 + S3 = S4 + S5.

We use the inequalities of (49) and Cauchy-Schwarz to estimate S1:

|S1| =

∣∣∣∣∣
N∗∑
n=1

(
∂ts−

s(tn)− s(tn−1)

∆t
, ens

)∣∣∣∣∣ ≤ 1

∆t

N∗∑
n=1

‖∆t∂ts− (s(tn)− s(tn−1))‖ · ‖ens ‖

≤ 1

2∆t2

N∗∑
n=1

∥∥∥∥∥
∫ tn

tn−1

(∂ts(t
n)− ∂ts(z))dz

∥∥∥∥∥
2

︸ ︷︷ ︸
S11

+
1

2

N∗∑
n=1

‖ens ‖2.

Further, by using the Bochner inequality and since ∂tts ∈ L2(0, T ;L2(Ω)) (see [41] Proposition
4.2), we estimate S11

S11 =
1

2∆t2

N∗∑
n=1

∥∥∥∥∥
∫ tn

tn−1

∫ tn

z

∂tts(η)dηdz

∥∥∥∥∥
2

≤ 1

2∆t2
∆t2

N∗∑
n=1

∥∥∥∥∥
∫ tn

tn−1

∂tts(η)dη

∥∥∥∥∥
2

≤∆t
2

N∗∑
n=1

∫ tn

tn−1

‖∂tts(η)‖2dη =
∆t

2

∫ T

0

‖∂tts(η)‖2dη

≤C∆t.

For S2, by using the properties of the projectors (13) and applying (15) one gets

|S2| =

∣∣∣∣∣
N∗∑
n=1

(
∂ts−

snh − s
n−1
h

∆t
, Phs(t

n)− s(tn)

)∣∣∣∣∣ =

∣∣∣∣∣
N∗∑
n=1

(
∂ts, Phs(t

n)− s(tn)

)∣∣∣∣∣
=

∣∣∣∣∣
N∗∑
n=1

(
∂ts− Ph∂ts, Phs(tn)− s(tn)

)∣∣∣∣∣ ≤ N∗h2 ≤ Th2

∆t
.

Now we estimate the term S3. By using (50), we have

S3 =
N∗∑
n=1

(
s(tn)− s(tn−1)− snh + sn−1

h

∆t
, ens

)
=

1

2

‖eN∗s ‖2

∆t
− 1

2

‖s0 − Phs0‖2

∆t
+

1

2

N∗∑
n=1

‖ens − en−1
s ‖2.
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For S4 and S5 we have

|S4| =

∣∣∣∣∣1τ
N∗∑
n=1

(
Php̄(t

n)− p̄nh − Php(tn) + pnh, Phs(t
n)− s(tn) + s(tn)− snh

)∣∣∣∣∣
=

∣∣∣∣∣1τ
N∗∑
n=1

(
Php̄(t

n)− p̄(tn) + p̄(tn)− p̄nh − Php(tn) + p(tn)− p(tn) + pnh, s(t
n)− snh

)∣∣∣∣∣
≤ C

τ

N∗∑
n=1

(
‖enp̄‖2 + ‖enp‖2 + ‖Php̄(tn)− p̄(tn)‖2 + ‖Php(tn)− p(tn)‖2 + ‖ens ‖2

)
,

|S5| ≤
C

τ

(
N∗∑
n=1

‖Phs(tn)− s(tn)‖2 +
N∗∑
n=1

‖ens ‖2
)
.

We gather the estimates for S1 to S6 and apply the properties of the operators Ph and Πh to get

‖eN
∗

s ‖2 ≤ C(h2 +∆t2) + C

N∗∑
n=1

∆t‖ens ‖2 + C

N∗∑
n=1

∆t‖enp̄‖2 + C

N∗∑
n=1

∆t‖enp‖2.

Applying the estimates from (69), (71) and (72), we have

‖eN
∗

s ‖2 ≤ C(h2 +∆t2) + C

N∗∑
n=1

∆t‖ens ‖2.

By using the Gronwall’s inequality with Lemma 2, we obtain

‖eN
∗

s ‖2 ≤ C(h2 +∆t2). (73)

The proof is completed by substituting (73) into (69), (71), and (72).

4 Numerical results

For the numerical results, triangular meshes from the FVCA8 benchmark mesh repository has
been used. The domain selected is the unit square

Ω = (0, 1)× (0, 1). (74)

The results presented in Section 3 are for two phase equation without gravity. However it was
mentioned in Remark 3 that the analysis also works in the presence of gravity and so for the
numerical results we have included gravity terms in (8) and (9): in dimensional form they read

q̄ = −ko(s)(∇p̄− ρoĝ), (75)

q = −kw(s)(∇p− ρwĝ), (76)

with ĝ being the unit vector along the direction of gravity and ρo, ρw being the non-dimensionalized
densities of the non-wetting (oil) and the wetting (water) phases. ĝ has been taken pointing along
the x-direction. ρo = 0.8 and ρw = 1 are used throughout. Similarly, source terms fo and fw
have been added in (6) and (7) respectively.
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The functions ko, kw and pc used in the computations, are

ko(s) = s, kw(s) = (1− s), pc(s) = s. (77)

The source terms fo, fw have the form

fo =
e−t

4
[1 + x2 + y2 − 2ρox+ τ((1 + 2x2 + 2y2)e−t − 4)], (78)

fw = −e
−t

4
[1 + x2 + y2 − 2ρwx+ (1 + 2x2 + 2y2)e−t]. (79)

The initial and boundary conditions are shown in Table 1.

Table 1 Assumed initial and boundary conditions.

IC Ω
t = 0 s(x, y, 0) = 1− 1

4
(1 + x2 + y2)

BC Ω

x = 0 p̄(0, y, t) = 1 + τ
4

(1 + y2)e−t p(0, y, t) = 1
4

(1 + y2)e−t

x = 1 p̄(1, y, t) = 1 + τ
4

(2 + y2)e−t p(1, y, t) = 1
4

(2 + y2)e−t

y = 0 q̄y = 0 qy = 0

y = 1 q̄y = − τ
2

(1− 1
4

(2 + x2)e−t)e−t qy = − 1
8

(2 + x2)e−2t

Observe that both Dirichlet and Neuman boundary conditions have been used instead of the
zero Dirichlet condition assumed for the analysis in Section 3. This is to show that the result of
Theorem 1 stays valid for more general boundary conditions.

One can directly verify that under these conditions the exact solution of the system is given
by,

s = 1− 1

4
(1 + x2 + y2)e−t, p̄ = 1 +

τ

4
(1 + x2 + y2)e−t, p =

1

4
(1 + x2 + y2)e−t, (80)

with q̄ and q calculated from (75) and (76).

Four different mesh sizes have been used for the computations, i.e. h = 0.1, 0.05, 0.02 and
0.01 and τ = 1 has been taken throughout. Figure 1 (left) shows the saturation for the exact and
the numerical solution at t = 1. The two profiles look almost superimposed on each other which
implies that the computational results are correct. As the equations are nonlinear, some kind
of linearization techniques have to be used. In our computations we have used the L-scheme as
presented in [53] for this purpose. Figure 1 (right) shows how the errors decrease with iterations
of the linearization step. An error cut-off of 10−8 has been used in order to make sure that the
errors due to the nonlinear solver do not influence the results of the order estimate.
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linear iterations
2 4 6 8 10 12 14

lo
g
10
(e
rr
or
)

-8

-7

-6

-5

-4

-3

-2

t = 0.5, ∆t = 0.01 h = 0.10
h = 0.05
h = 0.02
h = 0.01

Figure 1 (left) Saturation for the exact and the numerical solution at t = 1. Here h = 0.02 and ∆t = .001.
(right) The error characteristics of the linear iterations. ∆t = 0.01 is used in all the computations. The error is

calculated as (‖pin − p
i−1
n ‖2 + ‖p̄in − p̄

i−1
n ‖2 + ‖sin − s

i−1
n ‖2)1/2, where the superscript i indicates the solution at

the ith iteration.

log10 h

-2 -1.8 -1.6 -1.4 -1.2 -1

lo
g
1
0
(‖
e
n
‖)

-2.5

-2

-1.5

-1

t = 0.2
t = 0.5

Figure 2 Error ‖en‖ vs. log10 h. h and ∆t follow the relation (81). The errors are plotted at two times,
t = 0.2, 0.5. The black dashed line represents the slope of 1.

To recover the order of convergence of the scheme, we vary h and ∆t so that

h = ∆t. (81)

By taking h in this form one ensures that log10

√
(h2 +∆t2) = log10 h + constant. So if the slope

of log10 ‖en‖ against log10 h is 1 then it would support the analytical findings in Section 3. This
is precisely the case as shown in Figure 2. It shows the error plots at two times, t = 0.2, 0.5. The
lines are nearly parallel to the black dashed line, representing slope of 1.
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log10 h

-2 -1.8 -1.6 -1.4 -1.2 -1

lo
g
1
0
(‖
u
n
−
u
(t

n
)‖
)

-3

-2.5

-2

-1.5

t = 0.5p̄

p

s

q̄

q

Figure 3 Error log10(‖un − u(tn)‖) vs. log10 h. Here u = p, p̄, s,q, q̄. All the plots are for t = 0.5 and h, ∆t are
such that h = ∆t. The black dashed line represents the slope of 1.

An interesting observation is that the individual components of ‖en‖ also scales with h when
h = ∆t. This is shown in Figure 3. For h = ∆t the log plots of ens , enp , enp̄ , enq, enq̄ are all parallel
to the black dashed line representing slope of 1. This supports parts of the proof of Theorem 1,
e.g. (69), (73).

Next, h and ∆t are varied in a general way so that h = ∆t is not always satisfied. We plot
the errors ‖en‖2 against ∆t2 in Figure 4 (left) and against h2 in Figure 4 (right). The nearly
straight profiles of the errors, for a fixed h and for a fixed ∆t, implies that the errors behave as

‖en‖2 ≈ Ah2 +B∆t2, (82)

where A,B > 0 are constants. This is similar to what one expects from the proof of Theorem 1,
for small enough ∆t. Relation (82) still gives linear profiles in Figure 2. To estimate the values
of A and B, the average slopes of the line h = 0.1 in Figure 4 (left) and the line ∆t = 0.5 in
Figure 4 (right) are calculated. This gives A = .02 and B = .22.
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h
2
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‖e
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‖2

×10
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2

4
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8

∆t = 0.1

∆t = .05

∆t = .025

Figure 4 (left) Errors ‖en‖2 vs. ∆t2 for fixed h. (right) Errors ‖en‖2 vs. h2 for fixed ∆t. h = .1, .05, .02 and
t = 0.5 have been used throughout.
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We use the values of A and B to predict the error for any ∆t and h. This is shown in Table
2. Note that the value of A and B is derived from the line h = .1 and ∆t = .05 in Figure 4 but
they are used to estimate the rest of the errors. The match is reasonably close.

h = 0.1 ∆t = 0.1 ∆t = 0.05 ∆t = 0.025 ∆t = 0.01
log10(‖en‖) -1.3179 -1.5548 -1.7191 -1.8110

log10

(√
Ah2 +B∆t2

)
-1.3099 -1.5625 -1.7359 -1.8268

h = 0.05 ∆t = 0.1 ∆t = 0.05 ∆t = 0.025 τ = 0.01
log10(‖en‖) -1.3277 -1.5968 -1.8235 -1.9943

log10

(√
Ah2 +B∆t2

)
-1.3239 -1.6109 -1.8635 -2.0713

h = 0.02 ∆t = 0.1 ∆t = 0.05 ∆t = 0.025 ∆t = 0.01
log10(‖en‖) diverged -1.6156 -1.8844 -2.1522

log10

(√
Ah2 +B∆t2

)
- -1.6267 -1.9186 -2.2614

h = 0.01 ∆t = 0.1 ∆t = 0.05 ∆t = 0.025 ∆t = 0.01
log10(‖en‖) diverged -1.6218 -1.9075 -2.2413

log10

(√
Ah2 +B∆t2

)
- -1.6290 -1.9277 -2.3099

Table 2 log10(‖en‖) vs. log10

(√
Ah2 +B∆t2

)
for different meshsizes and timesteps. A = 0.02 and B = .22 are

used and they are calculated from Figure 4. In all the results, t = 0.5.
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10. C. Cancès, I.S. Pop and M. Vohraĺık. An a posteriori error estimate for vertex-centered finite volume dis-

cretizations of immiscible incompressible two-phase flow. Math. Comput., 83 (2014) 153-188.
11. X. Cao and I.S. Pop. Uniqueness of weak solutions for a pseudo-parabolic equation modeling two phase flow

in porous media, Appl. Math. Lett., 46 (2015) 25-30.
12. X. Cao and I.S. Pop. Two-phase porous media flows with dynamic capillary effects and hysteresis: uniqueness

of weak solutions, Comput. Math. Appl., 69 (2015) 688-695.



18 Xiulei Cao, Koondanibha Mitra

13. X. Cao and I.S. Pop. Degenerate two-phase porous media flow model with dynamic capillarity, J. Differ. Equ.,
260 (2016) 2418-2456.

14. X. Cao, S. F. Nemadjieu and S. Pop. Convergence of a MPFA finite volume scheme for a two phase porous
media flow model with dynamic capillarity, IMA J. Numer. Anal., accepted.

15. Z. Chen. Degenerate two-phase incompressible flow I. existence, uniqueness and regularity of a weak solution.
J. Differ. Equ., 171 (2001) 203-232.

16. D.A. DiCarlo. Experimental measurements of saturation overshoot on infiltration, Water Resour. Res. 40,
W04215.1-W04215 (2004).

17. H. Nasser El Dine and M. Saad. Analysis of a finite volume-finite element method for Darcy-Brinkman
two-phase flows in porous media. J. Comput. Appl. Math., 337 (2018) 51-72.

18. H. Nasser El Dine, M. Saad and R. Talhouk. A Finite Volume Scheme for Darcy-Brinkman’s Model of Two-
Phase Flows in Porous Media. DOI10.1007/978-3-319-63082-3-104. In book: Progress in Industrial Mathematics
at ECMI 2016.

19. J.Jr. Douglas, R. E. Ewing and M. F. Wheeler. The approximation of the pressure by a mixed method in the
simulation of miscible displacement. RAIRO Anal. Numér., 17 (1983) 17-33.

20. J. Droniou, R. Eymard, D. Hilhorst, and X. D. Zhou. Convergence of a finite-volume mixed finite-element
method for an elliptic-hyperbolic system. IMA J Numer Anal (2003) 23 (3): 507-538.

21. C.J. van Duijn, X. Cao and I. Pop. Two-phase flow in porous media: dynamic capillarity and heterogeneous
media. Transp. Porous Med., 110 (2015) 1-26.

22. C.J. van Duijn, Y. Fan, L.A. Peletier and S. Pop. Travelling wave solutions for degenerate pseudo-parabolic
equation modelling two-phase flow in porous media, Nolinear Anal. Real World Appl., Vol. 14 (2013), 1361-1383.

23. C.J. van Duijn, K. Mitra and I.S. Pop. Travelling wave solutions for the Richards equation incorporating
non-equilibrium effects in the capillarity pressure, Nolinear Anal. Real World Appl. 41 (2018) 232-268.

24. L.J. Durlofsky. Coarse scale models of two phase flow in heterogeneous reservoirs: volume averaged equations
and their relationship to existing upscaling techniques. Comput. Geosci., 2 (1998) 73-92.

25. M.G. Edwards. Unstructured control-volume distributed full tensor finite volume schemes with flow based
grids. Comput. Geosci. 6(2002) 433-452.

26. Y. Epshteyn, B. Riviere. Analysis of discontinuous Galerkin methods for incompressible two-phase flow. J.
Comput. Appl. Math. 225(2009) 487?509.

27. R. Barrett, M. Berry, T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine,
H.v.d. Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, (1994).

28. R. E. Ewing and M.F. Wheeler. Galerkin methods for miscible displacement problems with point sources
and sinks-unit mobility ratio case, in Mathematical Methods in Energy Research (Laramie, WY, 1982/1983),
SIAM, Philadelphia, (1984) 40-58.

29. R. Eymard, R. Herbin and A. Michel. Mathematical study of a petroleum-engineering scheme. ESAIM-Math.
Model. Numer. Anal.-Model. Math. Anal. Numer., 37 (2003) 937-972.

30. Y. Fan and S. Pop. A class of pseudo-parabolic equations: existence, uniqueness of weak solutions, and error
estimates for the Euler-implicit discretization, Math. Methods Appl. Sci., 34 (2011) 2329-2339.

31. Y. Fan and S. Pop. Equivalent formulations and numerical schemes for a class of pseudo-parabolic equations,
J. Comput. Appl. Math., 246 (2013), 86-93.

32. R. Fuč́ık, J. Mikyška, T. Sakaki, M. Beneš and T.H. Illangasekare, Significance of dynamic effect in capillarity
during drainage experiments in layered porous media. Vadose Zone J. 9 (2010) 697-708.

33. S. M. Hassanizadeh and W. G. Gray, Thermodynamic basis of capillary pressure in porous media, Water
Resour. Res., 29 (1993) 3389-3405.

34. R. Helmig, Multiphase Flow and Transport Processes in the Subsurface: a Contribution to the Modeling of
Hydrosystems, Springer, Berlin, 1997.

35. R. Helmig, A. Weiss, and B.I. Wohlmuth. Dynamic capillary effects in heterogeneous porous media. Comput.
Geosci., 11 (2007) 261-274.

36. R. Helmig, A. Weiss and B.I. Wohlmuth. Variational inequalities for modeling flow in heterogeneous porous
media with entry pressure. Comput. Geosci., 13 (2009) 373-389.

37. S. Karpinski and I.S. Pop. Analysis of an interior penalty discontinuous Galerkin scheme for two phase flow
in porous media with dynamic capillarity effects. Numer. Math. 136 (2017), 249-286.

38. S. Karpinski, I.S. Pop, F.A. Radu. Analysis of a linearization scheme for an interior penalty discontinuous
Galerkin method for two phase flow in porous media with dynamic capillarity effects. INT. J. Numer. Meth.
Eng. 112 (2017) 553-577.

39. J. Koch, A. Rätz and B. Schweizer. Two-phase flow equations with a dynamic capillary pressure. European
J. Appl. Math., 24 (2013) 49-75.

40. D. Kroener and S. Luckhaus. Flow of oil and water in a porous medium. J. Differ. Equ., 55 (1984) 276-288.
41. A. Lamacz and A. Rätz and B. Schweizer, A well-posed hysteresis model for flows in porous media and

applications to fingering effects, Adv. Math. Sci. Appl. 21 (2011) 33-64.
42. S. Manthey, S.M. Hassanizadeh, R. Helmig, and R. Hilfer, Dimensional analysis of two-phase flow including

a rate-dependent capillary pressure-saturation relationship, Adv. in Water Resour. 31.9 (2008): 1137-1150



Title Suppressed Due to Excessive Length 19

43. A. Michel. A finite volume scheme for two-phase immiscible flow in porous media. SIAM J. Numer. Anal., 41
(2003) 1301-1317.
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