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The hybridized discontinuous Galerkin method has been successfully applied
to time-dependent problems using implicit time integrators. These integrators
stem from the ’classical’ class of backward differentiation formulae (BDF) and
diagonally implicit Runge-Kutta (DIRK) methods. We extend this to the class
of general linear methods (GLM) that unify multistep and multistage methods
into one framework. We focus on diagonally implicit multistage integration
methods (DIMSIM) that can have the same desirable stability properties like
DIRK methods while also having high stage order. The presented numerical
results confirm that the applied DIMSIMs achieve expected approximation
properties for linear and nonlinear problems.

1 Introduction

Discontinuous Galerkin methods have been recognized as powerful discretiza-
tion methods for differential equations stemming from a variety of applications
[1, 2, 14, 16, 17, 19, 20, 31, 32]. A severe drawback of these methods is the large
numer of unknowns compared to other numerical schemes. This becomes
particularly problematic for steady-state problems or stiff time-dependent
problems, because there it is common to use implicit solution techniques that
couple the unknowns globally.
The number of globally coupled unknowns may be greatly reduced by

hybridization [13]. This leads to the class of so called hybridized discontinuous
Galerkin methods (HDG) [3, 26–29, 33] which has shown to be competitive
with other discretization schemes [25, 41]. HDG has initially been developed
for steady-state problems, it can also be applied to time-dependent problems
though, yielding a differential algebraic equation (DAE). The latter needs
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time integration schemes able to handle stiff problems. Good results have been
obtained with backward differentiation formulae (BDF) and diagonally implicit
Runge-Kutta schemes (DIRK) [23, 26, 29]; an approach using multiderivative
time integrators has been studied in [24].
In this work we study the coupling of an HDG method to a diagonally

implicit multistage integration method (DIMSIM) in Nordsieck representation
[4, 7]. These methods are a subclass of general linear methods (GLM)
[5, 6, 10, 12, 21]. GLMs are a generalization of multistep and multistage
methods and therefore contain these schemes as special cases. Their advantage
over classical time integrators such as BDF and DIRK methods is that
one can obtain methods with high accuracy that are L- and A-stable while
having stage order q > 1, being particularly important for very stiff problems.
Moreover, there are techniques available to adapt the time step size and the
order of the scheme [8, 21, 22] and an extension to implicit explicit (IMEX)
methods exists [36] as well.
This work is structured as follows: First, we briefly introduce the HDG

method and show its coupling to a GLM. Then, numerical results are shown.
We end the work with conclusions and outlook.

2 Numerical method

We consider partial differential equations of convection-diffusion type that
can be written as

wt +∇ · (f(w)− fv(w,∇w)) = 0 ∀ (x, t) ∈ Ω× [0, T ] (1)

w(x, 0) = w0(x) ∀ x ∈ Ω (2)

on a domain Ω ⊂ R2. The system consists of m ≥ 1 equations; the functions
f and fv are given, possibly nonlinear functions. Both Euler and Navier-
Stokes equations fall within this framework. As it is frequently done, we
reformulate the PDE (1) as a first-order PDE by introducing the additional
unknown σ := ∇w:

σ = ∇w ∀ (x, t) ∈ Ω× [0, T ] (3)

wt +∇ · (f(w)− fv(w, σ)) = 0 ∀ (x, t) ∈ Ω× [0, T ] (4)

w(x, 0) = w0(x) ∀ x ∈ Ω. (5)

If the system is first order, i.e. fv ≡ 0, then (3) is not needed and (4) simplifies
accordingly.

2



2.1 The hybridized discontinuous Galerkin method

For a proper discretization the domain Ω has to be partitioned into a set of
subdomains such that

Ω =

N⋃
k=1

Ωk. (6)

The number of subdomains is denoted by N . For a hybridized discretization
we also need the set of all edges Γ. It contains the edges Γk of intersecting
subdomains Ωk ∩ Ωk′ and subdomains intersecting the domain boundary
Ωk ∩ ∂Ω. The number of all edges is given by N̂ = |Γ|. Furthermore, we need
necessary spaces for the approximations of w, σ and the additional hybrid
unknown λ on the edges. The following standard spaces are considered:

Hh := {f ∈ L2(Ω) | f|Ωk
∈ ΠP (Ωk) ∀k = 1, . . . , N}2m (7)

Vh := {f ∈ L2(Ω) | f|Ωk
∈ ΠP (Ωk) ∀k = 1, . . . , N}m (8)

Mh := {f ∈ L2(Ω) | f|Γk
∈ ΠP (Γk) ∀k = 1, . . . , N̂ , Γk ∈ Γ}m. (9)

For a shorter notation we also define the following abbreviations for standard
scalar products on elements and edges

(h1, h2) :=
N∑
k=1

∫
Ωk

h1 · h2 dx,

〈h1, h2〉Γ :=
N̂∑
k=1

∫
Γk

h1 · h2 dσ, 〈h1, h2〉∂Ωk
:=

N∑
k=1

∫
∂Ωk

h1 · h2 dσ.

Applying the HDG method in a standard way yields the task of finding
σh ∈ Hh, wh ∈ Vh and λh ∈ Mh such that

(σh −∇wh, τh)− 〈λh − w−
h , τ

−
h · n〉∂Ωk

= 0 ∀τh ∈ Hh

(10)

((wh)t, ϕh)− (f(wh)− fv(wh, σh),∇ϕh) + 〈(f̂ − f̂v) · n, ϕ−
h 〉∂Ωk

= 0 ∀ϕh ∈ Vh

(11)

〈Jf̂ − f̂vK · n, µh〉Γ = 0 ∀µh ∈ Mh

(12)

is fulfilled for all times t ∈ [0, T ]. The fluxes on element boundaries ∂Ωk have
been replaced by numerical fluxes

f̂ := f(λh)− α(λh − w−
h )n, f̂v := fv(λh, σ

−
h ) + β(λh, w

−
h )n (13)

with positive real parameters α and β. The parameters have to be chosen
carefully to ensure stability of the scheme. For a detailed description on how
boundary conditions are incorporated, we refer to further publications [34, 38].
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Note that a time-derivative of only wh occurs in the equation. Therefore, the
equations form a set of differential algebraic equations (DAEs).

The number of unknowns in (10)–(12) is larger than for the initial problem
where λh would be absent. However, this formulation allows to apply static
condensation such that the global number of unknowns can be greatly reduced
[13].
In order to obtain a more compact notation we will abbreviate the set of

ansatz and test spaces by

Xh := Hh × Vh ×Mh (14)

and the vector of unknowns by

wh := (σh, wh, λh). (15)

Then, we can write (10)–(12) compactly in an ODE-like way as

T ((wh)t, ϕh) +N (wh;xh) = 0, ∀xh ∈ Xh (16)

where T is the vector containing time derivatives and N represents the spatial
discretization of the problem.

2.2 General linear methods

The differential algebraic equation obtained from the HDG discretization
requires good stability properties of the applied time integrator. Therefore,
mostly schemes that are at least A(α)-stable are used. Popular methods
that have been used with HDG discretizations are DIRK or BDF methods
[23, 26, 29].
In this work we want to discretize (16) using general linear methods [6,

9, 10, 21, 22]. These can be seen as generalization of standard methods like
multistage (such as DIRK) or multistep (such as BDF) methods. Multistage
methods rely on only r = 1 external approximation – the solution at the
previous time step – but compute s ≥ 1 internal approximations during stages.
Multistep methods rely on r ≥ 1 external approximations that are passed from
one time step to another, but have only s = 1 internal approximation that
equals the solution at the new time step. General linear methods allow the
usage of several internal approximations s ≥ 1 and external approximations
r ≥ 1.
In order to give a brief idea of the method we start with an ordinary

differential equation (ODE)

y′(t) = f(t, y), y(0) = y0 (17)

with unknown y, time t and a given initial condition y0. The ODE shall be
solved on a uniform grid in time with tn := t0 + n ·∆t. An approximation
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using a GLM is obtained via

Yi =

s∑
j=1

aij∆tFj +

r∑
j=1

uijy
[n−1]
j , i = 1, . . . , s (18)

y
[n]
i =

s∑
j=1

bij∆tFj +

r∑
j=1

vijy
[n−1]
j , i = 1, . . . , r (19)

[6]. External approximations are stored in y
[n−1]
j for j = 1, . . . , r. Additionally,

in each time step s internal approximations Yi (i = 1, . . . , s) are computed.
This is similar to Runge-Kutta methods. Once all internal approximations

are known the external approximations y
[n]
i are updated. The collection of Yi,

Fj , y
[n−1]
j and y

[n]
j are often written as single vectors consisting of the data

Y =


Y1
Y2
...
Ys

 , F =


F1

F2
...
Fs

 , y[n−1] =


y
[n−1]
1

y
[n−1]
2
...

y
[n−1]
r

 , y[n] =


y
[n]
1

y
[n]
2
...

y
[n]
r

 . (20)

Fj := f(Yj) is often referred to as stage derivative because, due to the ODE
(17), it describes the derivative of Yj in stage j. The shape of the method
depends heavily on the choice of values to be stored in y[n] and y[n−1]. This
also depends on the method and the way it is represented [10]. Pure multi-
step methods may store solutions at previous times yn−r, yn−r+1, . . . , yn−1,
the corresponding derivatives f(yn−r), f(yn−r+1), . . . , f(yn−1) or both. Pure
multistage methods only need to store the solution of the previous time yn−1.
Order and stability of the method depends on the careful choice of real

coefficients aij , uij , bij and vij . The coefficients of the method can be
compactly written as matrices[

A U
B V

]
or

A U

B V
, A ∈ Rs×s, B ∈ Rr×s, U ∈ Rs×r, V ∈ Rr×r. (21)

In this work we focus on a special class of general linear methods that
are also called diagonally implicit multistage integration methods (DIMSIM)
[4, 7, 21]. These are closely related to (singly) diagonally implicit Runge-
Kutta methods in the sense that

A =


λ
a21 λ
...

. . .
. . .

as1 . . . as(s−1) λ


is a lower triangular matrix with nonzero entries on the diagonal. This allows
to solve a system in each stage instead of getting a much larger system in case
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of nonzero entries on the upper triangular part. Furthermore, it is possible
to choose the other coefficients in such a way that stability properties are
equal to DIRK methods, i.e., A- and L-stable DIMSIMs are available. We
use DIMSIMs of order p = 1 to p = 3 that were presented in [21]. For the
applied DIMSIMs the stage order q is equal to p. We will refer to the methods
as DIMSIM1, DIMSIM2 and DIMSIM3 to distinguish between the schemes
of different order. Each method has s = p internal and r = p + 1 external
approximations. These DIMSIMs are formulated in Nordsieck formulation
[7, 30] which means that y[n] is the Nordsieck vector

y[n] =


y(tn)

∆ty′(tn)

∆t2y(2)(tn)
...

∆try(r)(tn)

 (22)

that stores the derivatives of y. Using the specific form (22) has the advantage
that time step adaptation can be easily incorporated since it only requires
rescaling of the Nordsieck vector. This has been successfully applied in
[8, 11, 21, 22] to ODEs. In this work, we do not pursue this any further, and
leave it for future work.
Because it is extremely unhandy to compute higher derivatives of the

ODE’s right-hand side, in practice, one usually uses an approximation to the
Nordsieck vector [7]. In the case of the first order method with r = 2 it is
self-starting since the Nordsieck vector is given by

y[0] =

(
y0

∆tf(y0)

)
. (23)

Higher order methods different require a different approach. In [40], the author
constructed special Runge-Kutta schemes that compute an approximation to
the Nordsieck vector at t = 0. In [21, 22], the author describes an approach
where the higher order DIMSIMs are started from lower order DIMSIMs. In
this work, we use an approach similar to the starting procedure of backwards
differentiate formulae. We use an already available DIRK scheme of suitable
order and compute r equidistant approximations to the solution at times
ti = i ·∆t, i = 1, . . . , r − 1. These values are used together with the given
initial data to construct an approximation to the Nordsieck vector using
interpolation.

2.3 Applying DIMSIMs to the HDG method

In (16) the semi-discrete form of the equations is already in the shape of a
DAE. Therefore, we have to solve (18)–(19) with slightly modified notation.
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In each stage i of the method we compute an internal approximation by solving

T (wn,i
h , ϕh) = −∆t

i∑
j=1

aijN (wn,i
h ;xh) +

r∑
j=1

uijT (y
[n−1]
j , ϕh), ∀xh ∈ Xh.

(24)
(Note that we have defined xh = (τh, ϕh, µh).) Once all stage values wn,i

h are
known we obtain the updated solution from

T (y
[n]
i , ϕh) = −

s∑
j=1

bij∆tN (wn,i
h ;xh) +

r∑
j=1

vijT (y
[n−1]
j , ϕh) (25)

which only requires the local inversion of a mass matrix on each element.
Here, y[n−1] stores an approximation to the Nordsieck vector,

y[n−1] =


wn−1
h

∆t ∂
∂tw

n−1
h

...

∆tr ∂r

∂trw
n−1
h

+O(∆tp+1). (26)

Note that p is the order of the applied DIMSIM.

3 Numerical results

In this section we present numerical results obtained from the HDG discretiza-
tion with DIMSIM time integrators in order to verify the approach. The first
test case is a linear convection-diffusion equation where the exact solution is
known. In the second test case, the more involved Navier-Stokes equations
are solved and the results are compared to other numerical experiments. The
system of equations is solved using Newton’s method until the residual drops
below 10−10. The arising linear system is then solved with a restarted GM-
RES until the relative residual drops below 10−12 for the first and 10−10 for
the second test problem.

3.1 Linear convection-diffusion equation

We first consider a 2D Gaussian that rotates on the domain Ω = [−0.5, 0.5]2

in counter-clockwise direction. The same problem has been studied for HDG
for different time integrators also in [23, 27, 35]. The flux functions are

f(w) = (−4x, 4y)T , fv(w,∇w) = ε∇w

with given diffusion constant ε = 10−3. The computation is run until final
time T = π

4 and Dirichlet boundary conditions are specified everywhere. The
solution to this problem is known what allows us to compute the error of our
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Figure 1: Errors of DIMSIM schemes of order 1 to 3 (left) and Runge-Kutta schemes of
same order (right) are presented.

method and check for correct order of convergence. The coarsest grid has
N = 8 triangular elements and the time step on this grid is ∆t = π

16 . We
use polynomials of degree P = 2 for the spatial discretization such that the
expect spatial order of convergence is P + 1 = 3. This shall not affect the
order of convergence in time because we consider methods of order p = 3 at
most.
In Fig. 1 we present the solution obtained under uniform refinement. On

the left we show the solution for DIMSIM time integration and on the right
the solution for DIRK time integration with same order of accuracy in time.
We observe that the methods retain the correct order of convergence in time.
Moreover, the errors produced are almost identical to the ones obtained from
the classical DIRK discretizations.

3.2 Navier-Stokes equations

As second test case we consider the compressible Navier-Stokes equations in
two space dimensions. A description of the fluxes can be found in [33]. We
consider the flow around a cylinder at Reynolds number Re = 180 and Mach
number Ma = 0.2. At these flow conditions vortices shed from the cylinder
what is known as Kármán vortex street.

We compute the solution on a mesh that extends to 20 diameters around
the cylinder. The mesh has N = 2916 elements and it is the same that has
been used in previous publications [23, 39]. We use polynomials of degree
P = 1, 2, 3. The flow field is initialized with free stream conditions. At
simulation time around t ≈ 750 the vortex street develops. We look at the
fully evolved vortex street in the interval t ∈ [1, 000; 10, 000] and compute
the mean drag coefficient cD and the Strouhal number Sr. These can be
compared to data from the literature given in Tab. 1.
The results from our computations are given in Tab. 2–4. The values

obtained for the drag coefficient and the Strouhal number are reasonable
compared to data from literature. This is especially true when the time step

8



Table 1: Values of the Strouhal number Sr and the drag coefficient from the literature.

Sr cD

Gopinath [15] 1.3406 0.1866
Henderson [18] 1.336 —
Williamson [37] — 0.1919

Table 2: Values of the Strouhal number Sr and the drag coefficient for DIMSIM1.

P = 1 Sr cD

∆t = 1 0.1733 1.2110
∆t = 5 0.0000 0.9723
∆t = 10 0.0000 0.9723

P = 2 Sr cD

∆t = 1 0.1733 1.2164
∆t = 5 0.1222 0.9542
∆t = 10 0.0000 0.9228

P = 3 Sr cD

∆t = 1 0.1733 1.2171
∆t = 5 0.1238 0.9492
∆t = 10 0.0000 0.9181

Table 3: Values of the Strouhal number Sr and the drag coefficient for DIMSIM2.

P = 1 Sr cD

∆t = 1 0.1898 1.3455
∆t = 5 0.1849 1.3449
∆t = 10 0.1733 1.3317

P = 2 Sr cD

∆t = 1 0.1898 1.3649
∆t = 5 0.1882 1.3714
∆t = 10 0.1774 1.3401

P = 3 Sr cD

∆t = 1 0.1898 1.3651
∆t = 5 0.1882 1.3727
∆t = 10 0.1774 1.3405

Table 4: Values of the Strouhal number Sr and the drag coefficient for DIMSIM3.

P = 1 Sr cD

∆t = 1 0.1898 1.3448
∆t = 5 0.1832 1.3216
∆t = 10 0.1667 1.2803

P = 2 Sr cD

∆t = 1 0.1898 1.3645
∆t = 5 0.1882 1.3377
∆t = 10 0.1708 1.2840

P = 3 Sr cD

∆t = 1 0.1898 1.3649
∆t = 5 0.1882 1.3385
∆t = 10 0.1708 1.2845
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size ∆t is decreased. The DIMSIM1 fails to obtain an unsteady solution for
low polynomial degrees and/or large time step because it is not accurate
enough to catch the time-dependent features of the solution. We have observed
similar behavior for time steps ∆t > 10 even for higher order time integrators
before [23]. Therefore, it is crucial to choose a discretization in time that is
sufficiently accurate. This may be achieved by reducing the time step size ∆t
or by using time integrators of higher accuracy.

4 Conclusion and outlook

We have presented the application of general linear methods to an HDG
discretization in space. The resulting system of equations is similar to the
system one obtains from classical BDF of DIRK methods. The numerical
experiments confirm the expected order of convergence in time and the
plausibility of the results.

Future work will include the evaluation of the performance of DIMSIM time
integrators for HDG schemes. In this setting time step adaption is crucial
in order to be competitive to other methods. Another interesting topic is
the coupling of implicit explicit (IMEX) general linear methods with the
hybridized discontinuous Galerkin methods.

Acknowledgements

This study was supported by the Special Research Fund (BOF) of Hasselt
University. The computational resources and services used in this work
were provided by the VSC (Flemish Supercomputer Center), funded by
the Research Foundation – Flanders (FWO) and the Flemish Government –
department EWI.

References

[1] D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini. Unified analysis
of discontinuous Galerkin methods for elliptic problems. SIAM Journal
on Numerical Analysis, 39:1749–1779, 2002.

[2] F. Bassi and S. Rebay. A high-order accurate discontinuous Finite-
Element method for the numerical solution of the compressible Navier-
Stokes equations. Journal of Computational Physics, 131:267–279, 1997.

[3] T. Bui-Thanh. From Godunov to a unified hybridized discontinuous
Galerkin framework for partial differential equations. Journal of Compu-
tational Physics, 295:114–146, 2015.

10



[4] J. Butcher. Diagonally-implicit multi-stage integration methods. Applied
Numerical Mathematics, 11(5):347 – 363, 1993.

[5] J. Butcher. General linear methods. Computers & Mathematics with
Applications, 31(4):105–112, 1996.

[6] J. Butcher. General linear methods. Acta Numerica, 15:157–256, 2006.

[7] J. Butcher, P. Chartier, and Z. Jackiewicz. Nordsieck representation of
DIMSIMs. Numerical Algorithms, 16(2):209–230, 1997.

[8] J. Butcher and H. Podhaisky. On error estimation in general linear
methods for stiff odes. Applied Numerical Mathematics, 56(3):345–357,
2006.

[9] J. C. Butcher. On the convergence of numerical solutions to ordinary
differential equations. Mathematics of Computation, 20(93):1–10, 1966.

[10] J. C. Butcher. Numerical Methods for Ordinary Differential Equations.
John Wiley & Sons, 2nd edition edition, August 2008.

[11] J. C. Butcher and Z. Jackiewicz. A reliable error estimation for diagonally
implicit multistage integration methods. BIT Numerical Mathematics,
41(4):656–665, 2001.

[12] A. Cardone, Z. Jackiewicz, J. H. Verner, and B. Welfert. Order conditions
for general linear methods. Journal of Computational and Applied
Mathematics, 290:44 – 64, 2015.

[13] B. Cockburn, J. Gopalakrishnan, and R. Lazarov. Unified hybridization
of discontinuous Galerkin, mixed, and continuous Galerkin methods for
second order elliptic problems. SIAM Journal on Numerical Analysis,
47:1319–1365, 2009.

[14] K. J. Fidkowski, T. A. Oliver, J. Lu, and D. L. Darmofal. p–Multigrid
solution of high-order discontinuous Galerkin discretizations of the com-
pressible Navier–Stokes equations. Journal of Computational Physics,
207:92–113, 2005.

[15] A. Gopinath and A. Jameson. Application of the time spectral method
to periodic unsteady vortex sheeding. AIAA Paper 06-0449, 2006.

[16] R. Hartmann and P. Houston. Symmetric interior penalty DG methods
for the compressible Navier–Stokes equations I: Method formulation.
International Journal for Numerical and Analytical Modeling, 3(1):1–20,
2006.

11



[17] R. Hartmann and P. Houston. Symmetric interior penalty DG methods
for the compressible Navier–Stokes equations II: Goal–oriented a posteri-
ori error estimation. International Journal for Numerical and Analytical
Modeling, 3(2):141–162, 2006.

[18] R. D. Henderson. Details of the drag curve near the onset of vortex
shedding. Physics of Fluids, 7:2102–2104, 1995.

[19] J. S. Hesthaven and T. Warburton. Nodal discontinuous Galerkin Meth-
ods: Algorithms, Analysis, and Applications. Number 54 in Texts in
Applied Mathematics. Springer Verlag, 2008.
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