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Abstract

The mathematical models for the capillary-driven flow of fluids in tubes are typically
assuming a static contact angle at the fluid-air contact line on the tube walls. How-
ever, the dynamic evolution of the fluid-air interface is an important feature during
capillary rise. Furthermore, inertial effects are relevant at early times and may lead
to oscillations at late times.

To incorporate and quantify the different effects, we start with a fundamental
description of the physical processes within the tube. We derive an upscaled model
of capillary-driven flow in circular cylindrical tubes that extends the classical Lucas–
Washburn theory by incorporating a dynamic contact angle and slip. We further
extend this model to account for inertia. Finally, we compare the solutions of the
different models to experimental data.

In contrast to the Lucas–Washburn model, the models with dynamic contact angle
match the experimental data, both the rise height and the contact angle, even at
early times. The models have a free parameter through the dynamic contact angle
description, which is fitted using the experimental data. Our findings suggest that
this parameter depends only on the properties of the fluid, but is independent of
geometrical features, such as the tube radius. Therefore, the presented models can
predict the capillary-driven flow in tubular systems upon knowledge of the underlying
dynamic contact-angle relation.
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1. Introduction

One hundred years ago, the classical works of Lucas [1], Washburn [2], Rideal
[3] and Bosanquet [4] laid the foundation for the description of the capillary-
driven flow of fluids in porous structures. Since then, this field of research has
gained attention due to its various applications, ranging from water transport
in soil and plants, over printing with ink, to oil recovery and CO2 sequestration.
To understand the flow processes in a porous medium, knowledge about the
fluid dynamics within its fundamental structures, the single pores, is needed. In
these, the surface tension leads to capillary-driven flow. For an overview on the
topic, we refer to the recent review by Cai et al. [5].

The model of Lucas and Washburn describes the balance between capillary
and hydrostatic pressure, leading to viscous flow until equilibrium at the so-
called Jurin’s height is reached. Fries and Dreyer [6] derived a formulation for
the solution of the Lucas–Washburn equation that remains valid also at late
times. Levine et al. [7] studied in detail the resulting flow close to the fluid-air
interface, assuming a spherical meniscus and low Reynolds numbers. Although
these basic mechanisms are well understood, the complex wetting effects lead
to a dynamic evolution of the interface, in particular of both its shape and
position. An important feature is the contact angle formed between the fluid-
air interface and the pore wall. In the aforementioned works, this contact angle
is assumed constant. However, experimental results invalidate this assumption,
in particular at early times, see e.g. [8, 9]. Martic et al. [10] discussed this
based on molecular dynamics simulations and the molecular kinetics theory.
This theory is also used by Hamraoui and Nylander [11] to discuss the effect
of a dynamic contact angle as a source of interface retardation and viscous
dissipation. Chebbi [12] and Popescu, Ralston and Sedev [13] compare several
dynamic contact-angle models when applied to the Lucas–Washburn equation.

Furthermore, inertial effects are relevant for early times of capillary rise, as
discussed in detail by Quéré [14], and for low viscous fluids they can even lead
to (damped) oscillations around Jurin’s height at late times. Xiao, Yang and
Pitchumani [15] additionally considered the end effect at the reservoir (sink flow)
for parallel plates and tubes, and derived a double Dirichlet series representation
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of the solution. An overview of the different regimes has been given by Zhmud,
Tiberg and Hallstensson [16] as well as by Fries and Dreyer [17]. However, all
these models are based on the assumption of a static contact angle.

To incorporate and quantify the influence of the different effects of the dy-
namic contact angle and of inertia, one should start with a derivation based
on the fundamental description within the tube. The upscaling of the result-
ing pore-scale solution yields a macroscopic model, which includes the relevant
physics and can be validated using experimental data. Thereby, the dynamics of
the capillary rise including the detailed evolution of the contact angle become
predictable. Furthermore, the application of these extended models helps to
reduce the discrepancy between the experiments and classical Lucas-Washburn
model observed e.g. in [9].

In this paper, we discuss extended models based on the upscaling of capillary-
driven flow in circular cylindrical tubes and validate them by comparison with
experimental data. To this end, we model the process by the Navier–Stokes
equations in an evolving domain due to the moving fluid-air interface with dy-
namic contact angle and slip, and apply an asymptotic expansion method. The
resulting upscaled model is a nonlinear first-order differential equation of Lucas–
Washburn type, which we solve analytically to obtain directly usable solutions.
We extend the upscaled model to incorporate inertial effects. The solutions
to the upscaled and to the extended model are compared to the experimental
results reported by Heshmati and Piri in [9].

The derivation of the solution to the upscaled model for the capillary rise
is presented in Section 2, followed by the extension to account for the effect of
inertia. To validate the theory, we compare the analytical and numerical solu-
tions to experimental data in Section 3. Finally, the results of the comparison
including uncertainties and limitations are discussed in Section 4. More details
of the upscaling procedure and of the comparison are presented in Appendix A
and Appendix B, respectively.

2. Modeling of capillary rise

We first discuss the upscaled model based on the asymptotic expansion
method applied to the Navier-Stokes equations coupled with the fluid-air inter-
face evolution. Thereafter, we extend the model to incorporate inertial effects.

2.1. Upscaled model and analytic solution
We consider the flow of a fluid in a thin, vertical tube, driven by the surface

tension at the fluid-air interface. This process can be modeled by the Navier-
Stokes equations defined in a time-dependent domain, where the fluid-air in-
terface is a free boundary. Assuming a small Reynolds number, we derive the
solution by asymptotic expansion and consider the limit of a vanishing radius-
to-length ratio ε = R/L (R being the tube radius and L Jurin’s height). In
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Figure 1: Schematic draw-
ing of the tube with ra-
dius R. The contact angle θ
is formed between the tube
wall and the fluid-air inter-
face at rise height hL. The
inlet pressure pin is attained
between tube and reservoir.

the dimensionless form, the evolution of the fluid rise
height h is then governed by

pin − h−
8h

1 + 4λ

dh

dt
= −

2 cos
(
θ(dh

dt )
)

Ca
. (1)

Here pin is the pressure at the inlet (bottom), λ de-
notes the slip length at the tube wall and Ca is the
capillary number, see Figure 1. This equation is
derived in Appendix A, where details on the non-
dimensionalization and on the asymptotic expansion
and the limit ε → 0 are given. Note that the dy-
namic contact angle θ may depend on the velocity of
the interface. Furthermore, (1) resembles the relation
derived by Washburn [2], based on macroscopic argu-
ments. However, Washburn discussed only the case
of a static contact angle, while here we incorporate a
dynamic contact-angle model.

In the context of capillary rise experiments, the
pressure at the inlet is approximately atmospheric,
i.e., pin = 0. The typical length scale is given by the equilibrium or Jurin’s
height L = 2σ cos(θs)/(ρgR), attained as t → ∞, and which is depending on
the fluid-air surface tension σ, the static contact angle θs (measured in the fluid),
the density ρ of the fluid, the gravitational acceleration g = 9.81 m/s2, and the
tube radius R. This yields Ca = 2 cos(θs) (cf. Appendix A), so that (1) becomes

8h

1 + 4λ

dh

dt
=

cos
(
θ(dh

dt )
)

cos(θs)
− h, (2)

for all t > 0. Clearly,the solution h = h(t) depends on the contact-angle model.
However, the specific choice of this model is uncertain without much reference
data, since the differences resulting after fitting the different models are typically
very small [18, 13]. For simplicity, we consider here a linear model in the velocity,
which was also used in [19, 11, 10, 18, 13] as a simplification of the molecular
kinetics theory, valid at low velocities. Specifically,

cos(θ(v)) = cos(θs)− ηCav,

where the dynamic parameter η ≥ 0 denotes the strength of the linear response
due to the interface velocity v = dh

dt . Note that this model arises naturally for
all possible contact-angle models after linearization. With this contact-angle
model, the rise model (2) becomes(

8h

1 + 4λ
+ 2η

)
dh

dt
= 1− h, (3)

for all t > 0. A natural initial condition is

h(0) = 0. (4)
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Figure 2: The height of the capillary rise given by (5) increases faster for higher slip length λ.
The dynamic parameter η retards the rise and determines the initial velocity at time t = 0.

Observe that, since 1 is an equilibrium solution to (3), the solution to the initial
value problem (3)–(4) remains below 1 for all times t. Moreover, h is increasing.
By separation of variables, the solution to (3)–(4) is obtained in implicit form,

(1− h(t)) exp

(
4h(t)

(1 + 4λ)η + 4

)
= exp

(
− (1 + 4λ)t

2(1 + 4λ)η + 8

)
. (5)

As h is monotone, using (5) one can express t as a function of h, namely

t = t(h) = − 8h

1 + 4λ
− 2(1 + 4λ)η + 8

1 + 4λ
ln(1− h).

At early times, this yields

t ≈ 2ηh+
(
η + 4

1+4λ

)
h2.

If η = 0, this resembles the classical Lucas–Washburn equation. If η > 0, the
first term implies a linear time-height relation at early times, when h � 1,
and therefore quadratic terms can be neglected. Figure 2 illustrates possible
solutions. The dynamic parameter η determines the velocity of the rise in the
beginning, since (3) yields dh

dt (0) = 1
2η . In particular, it is singular if η = 0,

since inertial terms and the movement of the air are neglected. On the other
hand, the influence of the slip length λ on the velocity increases with increasing
height h. Furthermore, for η > 0, this yields an initial contact angle θ = 90◦ at
time t = 0.

2.2. Extended model including inertial effects
The upscaled model described above requires the Reynolds number to be

small. In case of a low viscosity, or when the tube radius increases, the Reynolds
number becomes large, so that we cannot neglect inertial effects. In that situ-
ation, the upscaling procedure does not yield a closed expression for the height
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of the capillary rise, as the system remains fully coupled. Instead, we suggest to
use an empirical extension of the upscaled model, based on macroscopic consid-
erations, as discussed in [4, 16, 11, 17]. There, the balance between hydrostatic,
inertial and capillary forces was considered assuming Hagen–Poiseuille flow and
a spherical meniscus. In our context, the resulting balance reads

I d

dt

(
h

dh

dt

)
+

(
8h

1 + 4λ
+ 2η

)
dh

dt
= 1− h, (6)

where I = ε2Re = ρ3g2R5/(2µ2σ cos(θs)) is the inertial coefficient, see Ap-
pendix A. Note that the denominator (1 + 4λ) accounts for slip, and the term
2η dh

dt is due to the linearized contact-angle model.
With (4), this nonlinear second-order differential equation becomes degen-

erate. Furthermore, one needs to specify a second initial condition, similar to
the initial velocity. Like in [16], we use an asymptotic analysis carried out for
t → 0 with ansatz h(t) = ctα + o(tα). Equating the leading order terms, we
obtain that h(t) ∼ t/(η +

√
η2 + I), and hence

dh

dt

∣∣∣
t=0

=
1

η +
√
η2 + I

. (7)

To solve the initial value problem (4), (6), and (7) numerically, we refor-
mulate it as a system of nonlinear first-order differential equations and use the
variables w := h2 and v := dw

dt to the planar system. Equation (6) then becomes

dw

dt
= v,

dv

dt
=

2

I

(
1−
√
w −

(
4

1 + 4λ
+

η√
w

)
v

)
.

To avoid the singularity at w = 0, we use the initial conditions w(0) = 10−12 and
v(0) = 2

√
w(0)(

√
η2 + I − η)/I. Note that this choice does not significantly

affect the result as long as w(0) is sufficiently small. We have implemented
the numerical solver in Python 3.8.10 using the packages NumPy 1.21.0 [20], and
SciPy 1.3.3 [21]. The chosen time integrator is an implicit multi-step variable-
order (1–5) BDF method. The source code is available in [22].

3. Comparison with experimental data

To validate the suggested models, we compare the solutions to the experi-
mental data reported by Heshmati and Piri in [9], where the capillary rise of
glycerol, Soltrol 170 and water in vertical glass tubes with constant radii was
investigated. These results include both the rise height and of the contact angle
over time.

The comparison is done in three steps. First, the physical properties reported
in [9] are used for the dimensionless scaling, see also Table 1. Second, we
assume the late-time data to be near to equilibrium, and extract from these
the static contact angle for each of the three fluids. Note that the resulting
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Fluid ρ [kg/m3] µ [Pa s] σ [N/m] R [mm] θs [deg]

Glycerol 1260 1.0111 0.06346 0.250, 0.500, 1.00 5.63
Soltrol 170 774 0.0026 0.02483 0.375, 0.500, 0.65 9.79
Water 997 0.0011 0.0728 0.375, 0.500, 0.65 9.99

Table 1: The density ρ, viscosity µ, surface tension σ of the fluids and the experimental tube
radii R, as reported in [9]. The static contact angle θs is extracted from the late-time data.

static angles (<10◦) hardly influence the rise height (<2%), but strongly affect
the dynamic contact angle. In the third step, we match the solutions of the
suggested models to the experimental data by fitting the remaining parameters;
namely the dynamic contact-angle parameter η and the slip length λ. For this,
for each fluid and each radius separately, we perform a non-linear least-squares
fitting of the rise height (“h-fit”), of the contact angle (“θ-fit”), and of both at the
same time (“both-fit”). Thereby, we can compare the parameter values obtained
for the different fits as well as for the different radii, to investigate the predictive
abilities of the suggested models. We have implemented the procedure in Python
3.8.10 using the packages pandas 1.3.0 [23] and LMFIT 1.0.2 [24]. The source
code is available in [22].

To illustrate the effect of the dynamic contact-angle model, we also provide
the classical Lucas–Washburn solution, which is obtained from (5) when taking
η = 0 and λ = 0, using the dimensionless scaling and static contact angle found
in the first and second step for the comparison.

3.1. Glycerol
In the first set of measurements, glycerol was used as the rising fluid. The

parameters are given in Table 1. The scale ratio ε was below 0.1 for all radii.
Due to the high viscosity, the inertial effects are negligible (I < 1.5 · 10−3),
so that the solutions to the upscaled model (5) and to the extended one (6)
coincide. Therefore, we present in Table 2 only the results for the upscaled
model. Note that the simultaneous fitting of the parameters η and λ results
in dimensionless slip lengths λ < 10−2, except for the both-fit at the radius
1.0mm, which yields λ = 0.026± 0.109. Hence, slip is negligible and ignored in
the further discussion.

The comparison of the experimental data with the fitted upscaled model
(3) and the classical Lucas–Washburn model (η = 0) in Figure 3 illustrates the
relevance of the dynamic contact angle. While both models match the late-time
data when the static contact angle is approached, only the upscaled model with
dynamic contact angle agrees with the early-time data. In particular, it matches
reasonably both the rise height and the contact angle for all three radii. Note
that the three fit-types (h, θ, both) yield different parameters, but the resulting
solutions only differ on the scale of the scatter in the experimental data, see
also Appendix B. Note that the increase in η with increasing radius is expected,
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R h-fit θ-fit both-fit
[mm] η χ2

ν η χ2
ν η χ2

ν

0.25 0.402 ± 0.010 0.059 0.525 ± 0.008 0.647 0.519 ± 0.006 0.388
0.50 2.356 ± 0.066 0.327 2.151 ± 0.069 2.105 2.183 ± 0.049 1.203
1.00 5.935 ± 0.383 1.226 10.077 ± 0.613 3.985 8.787 ± 0.461 4.053

Table 2: The best-fit parameter η (± estimated standard deviation) and the reduced residual
χ2
ν when fitting the upscaled model to the experimental data of the height (h-fit), the contact

angle (θ-fit) and both (both-fit), for the glycerol experiments.
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R = 0.25mm: Experiment Lucas–Washburn Upscaled Model (η = 0.52)
R = 0.50mm: Experiment Lucas–Washburn Upscaled Model (η = 2.18)
R = 1.00mm: Experiment Lucas–Washburn Upscaled Model (η = 8.79)

Figure 3: The experimental data for glycerol is matched well by the upscaled model (both-fit).
In particular, at early times the representation of the rise is much better than the one for the
classical Lucas–Washburn model.

as the dimensional dynamic parameter should be approximately constant. This
effect is discussed for all fluids in Section 4.1.

3.2. Soltrol
In the second set of measurements, Soltrol 170 was used as the rising fluid.

The parameters are given in Table 1. The scale ratios ε were below 0.1 for
all radii. In contrast to the previous case, the extended model differs from
the upscaled one (I = 1.0, 4.2, 15.7), but for all radii the best-fit parameters
coincide within 1.5 standard deviations (< 5% difference), while the residuals
are rather lower (−40% to +30% difference, avg. −6%). Hence, we illustrate the
minor differences in Figure 4, and report the results for both models in Table 3.
Note that the fit of the dimensionless slip length yields λ < 10−6 in all cases,
which is again negligible and thus ignored.

For Soltrol, the fitted upscaled model (5) matches the experimental data al-
most perfectly, while the classical Lucas–Washburn model (η = 0) only predicts
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R h-fit θ-fit both-fit
[mm] η χ2

ν η χ2
ν η χ2

ν

0.375 1.464 ± 0.067 0.313 1.250 ± 0.058 2.153 1.273 ± 0.042 1.232
0.500 2.521 ± 0.080 0.196 2.358 ± 0.081 1.042 2.386 ± 0.056 0.603
0.650 4.588 ± 0.162 0.414 3.963 ± 0.143 1.370 4.098 ± 0.108 0.951

0.375 1.437 ± 0.005 0.340 1.241 ± 0.027 2.239 1.261 ± 0.044 1.275
0.500 2.430 ± 0.075 0.207 2.309 ± 0.062 0.623 2.330 ± 0.045 0.403
0.650 4.370 ± 0.016 0.537 3.830 ± 0.024 1.183 3.944 ± 0.122 0.899

Table 3: The best-fit parameter η (± estimated standard deviation) and the reduced residual
χ2
ν when fitting the upscaled model (top rows) and the extended model (bottom rows) to the

experimental data of the height (h-fit), the contact angle (θ-fit) and both (both-fit), for the
Soltrol 170 experiments.

R h-fit θ-fit both-fit
[mm] η χ2

ν η χ2
ν η χ2

ν

0.375 0.162 ± 0.005 0.058 0.377 ± 0.017 2.054 0.367 ± 0.013 1.143
0.500 0.111 ± 0.020 0.153 0.498 ± 0.037 3.914 0.476 ± 0.026 2.249
0.650 2.849 ± 0.064 0.234 1.052 ± 0.079 4.595 1.248 ± 0.079 4.203

Table 4: The best-fit parameter η (± standard deviation) and the reduced residual χ2
ν when

fitting the extended model (without slip) to the experimental data of the height (h-fit), the
contact angle (θ-fit) and both (both-fit), for the water experiments.

the stationary solution well (see Figure 4). In particular, the upscaled model
with dynamic contact angle agrees with the data of both the rise height and the
contact angle for all three radii and at all times. For more details, see also Ap-
pendix B. The fit of the extended model coincides with the one of the upscaled
model. Only at very early times (until 0.05s), the extended model predicts a
slightly lower contact angle. These early-time dynamics are especially relevant
for larger radii and less viscous fluids like water, as we show in the following
and discuss in Section 4.

3.3. Water
In the last set of measurements, distilled water was used as the rising fluid.

The parameters are given in Table 1. The scale ratios ε were below 2.9 ·10−2 for
all radii. In contrast to the previous cases, the extended model differs signifi-
cantly from the upscaled one (I = 4.1, 17, 64), see Figure 5. The upscaled model
(both-fit) only matches the contact angle and late-time height (after ≈ 0.05s).
The experimental data is much better represented by the extended model, hence
we only report these results in Table 4. More details and the results of the up-
scaled model can be found in Appendix B. Note that the fit of the dimensionless
slip length was inconsistent (λ < 0.15) with generally large standard deviation.
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R = 0.375mm: Exp. LW Upscaled Model (η = 1.27) Ext. Model (η = 1.26)
R = 0.500mm: Exp. LW Upscaled Model (η = 2.39) Ext. Model (η = 2.33)
R = 0.650mm: Exp. LW Upscaled Model (η = 4.10) Ext. Model (η = 3.94)

Figure 4: The experimental data for Soltrol 170 is matched almost perfectly by the upscaled
model (both-fit), while the classical Lucas–Washburn model (LW) only describes the sta-
tionary solution well (after 1s). For the upscaled and the extended models after fitting, the
solutions practically coincide.

For the θ-fits, the slip was negligible (λ < 10−9), while the other fits suggest
the occurrence of an effective slip, which might be due to pre-wetting films, as
discussed in Section 4.4.

For water, the fitted extended model matches reasonably the experimental
data, although the rise height is slightly over-predicted (+10%) for the radius
R = 0.65mm, see Figure 5. In particular, note that the model predicts an
overshoot (between 0.2s and 0.4s). The experimental data does not show this
behavior. Instead, the rise seems delayed compared to the other experiments
(3.4mm vs. 6.5–7.4 at time 0.016s).

4. Discussion

The above comparison shows that the presented models predict the dynamics
of the capillary rise in circular tubes well. In the following, we elaborate on the
physical basis of the fitted dynamical parameter, and discuss further aspects that
might have an impact on the experimental and theoretical data. In particular,
we consider the influence of the initial transient regime and of the meniscus
shape, as well as possible wetting films and resulting slip in the case of water.
Finally, we address the uncertainty and limitations of the suggested models and
of the fitting.

4.1. The dynamic parameter as physical property
The dynamic parameter η obtained by fitting can be interpreted as a physical

property of the fluid system. For this, we use dimensional quantities denoted
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R = 0.375mm: Exp. LW Upscaled Model (η = 0.42) Ext. Model (η = 0.37)
R = 0.500mm: Exp. LW Upscaled Model (η = 0.64) Ext. Model (η = 0.48)
R = 0.650mm: Exp. LW Upscaled Model (η = 1.91) Ext. Model (η = 1.25)

Figure 5: The experimental data for water is matched well by the extended model (both-fit),
while the upscaled model (both-fit) only matches the contact angle and late-time data (after
≈ 0.05s). The classical Lucas–Washburn (LW) model only describes the stationary solution
well (after 0.1s).

by a hat. Although the different fitting criteria, namely the height, the con-
tact angle, or both, provide optimal parameters with significant variation, the
dynamic parameter η̂ [s/m] (scaling µ/(ρgR2)) seems to be independent of the
tube radius, see Figure 6. This agrees with the results reported in [19, 11], where
the Lucas–Washburn equation with dynamic contact angle was compared with
experiments of ethanol, water and silicon oil in glass tubes, and those obtained
by molecular dynamics simulations in [10]. Further experimental data consid-
ering a larger range of radii and hence velocities is necessary to confirm this
hypothesis.

Note that the closely related linearized molecular-kinetic theory discussed
e.g. in [19, 10, 11, 18] yields the dynamic contact-angle model

cos(θs)− cos(θ) = ξv̂,

where v̂ denotes the contact line velocity. Here, the intrinsic friction coefficient
ξ [s/m] is proportional to the ratio µ/σ of the viscosity to the fluid-air surface
tension. Therefore, we expect an almost constant ratio η̂σ/µ for all fluids, which
is also found for the fitted parameter η̂, since the ratio is ca. 30–70 for glycerol,
ca. 25–35 for Soltrol 170 and ca. 5–50 for water.

4.2. The influence of the initial transient regime
At the start of the experiment, the tube touches the surface of the fluid

in the reservoir. This topological change initiates the rise and the meniscus
shape, which are hence strongly affected by the (touch) speed and the exact
(nanometric) surface of the tube tip. In the suggested models, we neglect this
initial transient regime and assume that a stable Hagen–Poiseuille flow profile
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Figure 6: The dimensional dynamic parameter η̂ = η/U of the models (empty: upscaled,
filled : extended) fitted to the experimental data of the height (h-fit), the contact angle (θ-
fit) and both (both-fit). Observe that these parameters vary significantly from one fluid to
another, but appear to not depend on the tube radius.

and a spherical meniscus are formed quasi-instantaneously. To understand the
details better, accurate micro-scale analysis and simulations in the initial stage
are necessary. For micro-gravity experiments, Stange, Dreyer and Rath [25]
found three successive phases: a quadratic dependence of the meniscus height
on time (h ∼ t2), followed by a linear increase (h ∼ t), and, finally, the Lucas–
Washburn behavior (h2 ∼ t).

However, the fitting results suggest that the initial transient regime is indeed
negligible here, especially for glycerol and Soltrol 170 (cf. Sections 3.1 and 3.2),
for which we could even neglect inertia (which was included only in the extended
model). Nevertheless, for large radii, as well as less viscous fluids, such as
water, these effects might be significant. In particular, the water experiment
with largest radius (R = 0.65mm) shows deviations from an initially linear
height-time relation, see Figures 5 and B.13. Additionally, for such regimes, the
proper choice of the (numerical) initial conditions for the extended model (6)
might be important. Here, we used asymptotic analysis to approach t = 0, and a
sufficiently small numerical regularization with negligible impact on the solution
(cf. Section 2.2). Further investigation can lead to conditions (or extensions)
that include the transient effect.

4.3. The meniscus shape
The meniscus shape is assumed spherical for the experimental measurement

of the contact angle, as well as for the discussed models. However, this shape
might be deformed due to the influence of the inertia and gravity. For glyc-
erol and Soltrol 170, the agreement of the experimental contact-angle data and
the fitted upscaled model gives confidence that these effects can be neglected.
For water, the experimental contact angle data has a rather large scatter, and
the differences between experiments and fitted models are higher (cf. Figures 5
and B.11 to B.13). For experiments with water in glass tubes of lower radius
(R = 0.15mm and R = 0.2mm), Xue et al. [8] reported that the rise velocity
is too high to have a spherical meniscus shape. Therefore, the obtained results
for the contact angle of water should be treated with caution.
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4.4. Wetting films and slip
For glycerol and Soltrol 170, Heshmati and Piri vacuum-dried the tubes im-

mediately before the experiments [9], so that no pre-wetting films were present.
Our model fitting resulted accordingly in negligible slip lengths, λ < 10−2, which
translates into a dimensional slip length below 1µm. On the contrary, the tubes
for the experiments with water were only partially dried using a paper filter, to
avoid a contamination affecting the contact angle and the equilibrium rise [9].
Hence, heterogeneous pre-wetting films of water could possibly be present in the
tubes. This can influence the contact angle and the meniscus shape, and induces
difficulties for the measurements and the modeling, so that a direct comparison
becomes more involved.

Additionally, the presence of wetting films would reduce the dissipation from
the formation of water-glass interfacial area. Hence, the water rises faster, which
corresponds to an effective slip in our models. In the fitting of the extended
model using the height data (h-fit & both-fit), we, indeed, observed a relevant
slip length up to 0.15 (dimensional about 0.1mm, cf. Table B.6). However, the
dynamic coefficient η and the slip length λ are strongly correlated, such that
the slip length in the model is difficult to relate to the physical behavior.

4.5. Uncertainty and limitations of the suggested models and of the fitting
Since the suggested models are derived in leading order for ε� 1, errors in

the order of ε are expected (here ε < 0.01). Furthermore, for simplicity, we chose
a linearized dynamic contact-angle model. A higher accuracy can be obtained
using a more sophisticated contact-angle model, which, itself, needs further
investigation and validation (cf. [18, 13]). Additionally, a Hagen–Poiseuille flow
is assumed for the extended model. Deviations due to inertial effects are ignored,
but might affect the inertial coefficient I. This could explain the overshoot
observed for the extended model in the case of water with tube radius R =
0.65mm (cf. Figure 5), which is not present in the experiment.

Furthermore, the static contact angle is highly sensitive to the used mate-
rials. In contrast to the total wetting (θ = 0◦) used in [9], we extracted them
from the experiments and found values between 5 and 10 degrees. Note that, for
water-air-glass systems, even a static contact angle of 20–30 degrees is reported
in [26]. Although this has only a minor influence on the rise height, it affects
the fitting for the dynamic contact angle.

5. Conclusions

The upscaled model of capillary-driven flow in circular cylindrical tubes ex-
tends the classical Lucas–Washburn theory by incorporating a dynamic contact
angle. Using a simple relation between the contact angle and the velocity of the
moving contact line, we derived an analytical expression for the capillary rise
over time. Based on empirical arguments, we extended the mathematical model
to account for inertial effects.
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To validate the models, we compared the solutions to the experimental data
observed by Heshmati and Piri [9]. In contrast to the Lucas–Washburn model,
the models with dynamic contact angle do match the experimental data, both
the rise height and the contact angle, even at early times. The fitting procedure
requires only one parameter for the dynamic contact angle. In particular, our
findings suggest that this parameter depends only on the physical properties
of the involved fluids (and of the tube), but is independent of geometrical fea-
tures, such as the radius of the tube. Therefore, the presented models can be
used to predict capillary-driven flow in tubular systems upon knowledge of the
underlying dynamic contact-angle relation.

In a future work, we will include this approach in a dynamic pore-network
model, to study the resulting dynamic core-scale effects and to derive upscaled
models valid a that and possibly larger scale.
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Appendix A. Summary of the upscaling process for a tube

We consider a three-dimensional thin tube of length L and radius R � L,
see Figure 1, and assume axisymmetry for all quantities. Using a cylindrical
coordinate system, we denote the axial and radial component of a vector by ·z
and ·r and suppress any dependency on the angular component. We consider the
flow of one fluid bounded by a fluid-air interface in contact with the solid tube
wall. Following the non-dimensional modeling in [27], due to axial symmetry,
the non-dimensional tube is reduced to the domain Ω = (0, 1)2, with scaled
differential operators

∇ε= ez∂z + ε−1er∂r, ∆ε= ∂2
z + ε−2r−1∂r(r∂r),

Dε(uε) = 1
2 (∇εuε+ (∇εuε)T ).

The fluid-air interface has an a-priori unknown location and shape at time t >
0, and therefore appears as a free boundary in the mathematical model. It
is parametrized by γε = γε(t, s), such that the interface at time t becomes
Γε(t) = {γε(t, s) | s ∈ [0, 1]}. In particular, s = 0, 1 correspond to the interface
position in the center and at the tube wall (contact line), respectively. Hence,
the normal and tangential unit vectors at Γε(t) are given by

tεΓ = 1√
(∂sγεz)2+(ε∂sγεr)2

∂sγ
ε, nεΓ = 1√

(∂sγεz)2+(ε∂sγεr)2
(ε∂sγ

ε
rez − ∂sγεzer).

The flow of one fluid phase is described by the incompressible Navier-Stokes
equations (without angular flow),

ε2Re
(
∂tu

ε+ (uε · ∇ε)uε
)

+∇εpε− ε2 ∆εuε= −ez in Ωε(t), (A.1)
∇ε·uε= 0 in Ωε(t), (A.2)

pε= pin, uεr = 0 at z = 0, (A.3)
uεr = 0, ∂ru

ε
z = 0, ∂rp

ε= 0 at r = 0, (A.4)
uεr = 0, uεz + 2ελεez ·Dε(uε)er = 0 at r = 1, (A.5)

∂sγ
ε
z = 0 at s = 0, (A.6)

cos
(
θ(∂tγ

ε
z)
)

= tεΓ · ez at s = 1, (A.7)

where uε(t,x) and pε(t,x) are the velocity and the pressure of the fluid, which
flows inside the domain Ωε(t). The dimensionless numbers and physical pa-
rameters are given in Table A.5. Note that the Navier-slip condition (A.5) is
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Parameter Symbol

Tube length & radius L & R

Density of the fluid ρ

Viscosity of the fluid µ

Surface tension coefficient σ

Gravitational acceleration g

Dim.-less Number Symbol Value

Scale ratio ε R/L

Reynolds number Re ρ2gR2L/µ2

Capillary number Ca ρgRL/σ

Dimensionless quantity Symbol Scaling

Position x [L, R]
Time t µL/(ρgR2)

Velocity of the fluid u ρgR2/µ

Pressure of the fluid p ρgL

Interface parametrization γ [L, R]
Interface curvature κ 1/R

Slip length λ R

Contact angle law θ 1

Table A.5: Summary of all parameters (top left), dimensionless numbers (bottom left), dimen-
sionless quantities and their respective scaling (right).

necessary to avoid a singularity in the pressure and in the shear stress at the
contact line [28]. Furthermore, the contact angle θ : R → (0, π) (measured
in the fluid) is given by a dynamic model that depends on the velocity of the
contact line.

At the interface Γε(t), the normal stress is balanced by the surface tension,

−pεnεΓ + 2ε2 Dε(uε)nεΓ = 2
Caκ

εnεΓ on Γε(t), (A.8)

where κε= ε∇ε·nεΓ is the local mean curvature of the interface. In the normal
direction, the interface moves with the fluid,

∂t(γ
ε
zez + εγεrer) · nεΓ = uε · nεΓ on Γε(t). (A.9)

The initial conditions for the interface position and for the velocity are left
out here. In the following, we implicitly require them to match the asymptotic
solutions, to avoid possible initial layer solutions for small times.

For the following analysis, we use an asymptotic expansion technique with
respect to ε. Letting ε → 0, we derive the formal limit of the model in (A.1)–
(A.9), which is which is similar to saying that the tube becomes very thin. The
outcome is an upscaled model, which describes the averaged behavior of the
system. This is done in two steps, directly following the derivation in [27] for
a two-dimensional thin strip. First, we solve the problem in the bulk domain
Ωε(t) away from the interface Γε(t). We then show that this bulk solution has a
boundary layer solution in an O(ε)-region around Γε(t). Altogether, the solution
is of Hagen-Poiseuille type in the bulk, coupled by a dynamic Young-Laplace
law at the interface, where the interface position and the total flux are given by
differential algebraic equations.

All variables are assumed to be smooth and to depend regularly on ε, starting
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with the leading order O(ε0). We apply the homogenization ansatz

uε(t,x) = u0(t,x) + εu1(t,x) +O(ε2),

pε(t,x) = p0(t,x) + εp1(t,x) +O(ε2),

γε(t, s) = γ0(t, s) + εγ1(t, s) +O(ε2).

Furthermore, the following assumptions are made on the model parameters.

(H1) The Reynolds number Re is uniformly bounded, i.e., Re ≤ O(ε0).

(H2) The slip length λε has the form

λε(t, z) = λ0 + λe exp
(
−ε−1|z − γεz(t, 1)|

)
,

for given constants λ0, λe ≥ 0 that are independent of ε. Moreover, there
holds either λe = 0, or λ0 = 0. Note that the latter represents the case of
rapidly decaying slip away from the interface.

(H3) The contact-angle model θ : R → (0, π) is Lipschitz-continuous and does
not dependend on ε.

(H4) The leading order interface position in z is constant, i.e., ∂sγ0
z ≡ 0.

(H5) The capillary number Ca is of order 1, i.e., Ca = O(ε0).

As will be seen below, (H1) ensures that the flow remains laminar. The inde-
pendence of ε of θ, as stated in (H3), is crucial for the derivation. As discussed
above, the slip is necessary to allow the movement of the contact point. For
simplicity, (H2) requires a simple expression of the slip. This avoids technical
complexities, while allowing for the typical no-slip condition at the tube wall
further away from the interface (λ0 = 0). Furthermore, note that (H4) means
that the fluid-air interface Γε(t) has only "small" deformations in the order of
the radius, i.e., it is almost transversal, such that γεz(t, s) = γ0

z (t) +O(ε).
The asymptotic expansions are used in the flow equations (A.1)–(A.9). Next,

the terms of the same order in ε are equated to obtain the limit equations. Note
that we are only interested in the leading order terms and relations, therefore
higher order terms are neglected. To simplify the notation, the indices (·)ε and
(·)0 are left out. Hence, all following equations should be understood as up to
terms of order ε.

First, we consider the flow in the bulk domain Ωε(t) and solve the resulting
equations away from the interface, using (H1)–(H4) and (A.1)–(A.5). Using
the mass conservation (A.2) and the boundary conditions (A.4) and (A.5), one
obtains (in the leading order) ur = 0 for z < γz(t). The second component
of the momentum balance (A.1) yields in leading order ∂rp = 0. Integrating
the first component of the momentum balance (A.1) twice over r and using the
symmetry and the wall boundary conditions (A.4) and (A.5), one obtains

uz(t,x) =
r2 − (1 + 2λ)

4
(∂zp(t,x) + 1) for z < γz(t). (A.10)
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Integrating (A.10) over the cross-section yields

q(t) := 2π

∫ 1

0

uz(t,x)rdr = −π(1 + 4λ)

8
(∂zp(t,x) + 1) , (A.11)

for any z < γz, where q(t) denotes the total flux in the tube. Observe that q(t)
is independent of z due to the mass conservation (A.2). We obtain the pressure
p from (A.11) using the inlet boundary condition (A.3). Inserting the result
into (A.10), we obtain the bulk solution

p(t,x) = pin(t)− z − 8z

π(1 + 4λ)
q(t), u(t,x) = 2q(t)

1 + 2λ− r2

π(1 + 4λ)
ez. (A.12)

Note that the solution in the bulk domain is of Hagen-Poiseuille type. In the
following, the total flux q will be determined via the boundary layer at the
interface Γε(t).

We continue the analysis for the interface region around Γε(t) and insert the
homogenization ansatz into (A.1)–(A.9), using (H1)–(H5) and the inner scaling

Xz(t, z) :=
z − γ0

z (t)

ε
, Xr := r, P (t,X) := p(t,x).

Then, (A.1) yields in leading order ∇XP = 0, so that, by matching with the
outer solution, we obtain the constant pressure P (t,X) = p(t, γz(t)). Plugging
this into the interfacial stress balance (A.8) yields in leading order that the
curvature is constant. Therefore, the interface is a spherical cap. Combining
this with the contact-angle condition (A.7), and plugging in the bulk pressure
solution (A.12), one obtains

pin − γz − q
8γz

π(1 + 4λ)
= −

2 cos
(
θ(∂tγz)

)
Ca

. (A.13)

Using the mass conservation (A.2), the interface velocity (A.9), the outer
velocity solution (A.12) and the Gauß theorem, we obtain

0 =

∫
Ωε
∇ε·uεdx =

∫
Γε
uε · nεΓda− 2π

∫ 1

0

uεz
∣∣
z=0

rdr = π

∫ 1

0

∂tγzds− q

= π∂tγz − q.

Therefore, the leading order position γz of the interface satisfies

∂tγz(t) =
q(t)

π
. (A.14)

Inserting this into (A.13) finally yields

pin − γz −
8γz

1 + 4λ
∂tγz = −

2 cos
(
θ(∂tγz)

)
Ca

.

After solving this nonlinear first-order differential equation for the interface
position γz, the total flux q, the velocity u and the pressure p inside the tube
are determined by (A.12) and (A.14). Finally, note that the interface position
γz is called rise height h throughout the paper.
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Appendix B. Detailed results of the fitting

The results of the different fitted models are presented in the following. First,
in Figure B.7 we illustrate the different fits of the upscaled model obtained for
glycerol. The fits of the upscaled and the extended model for Soltrol 170 are
presented in Figures B.8 to B.10. Finally, the fits of the two models for water
are presented in Table B.6 and Figures B.11 to B.13, including the results for
the simultaneous fit of the dynamic parameter η and the slip length λ.
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Figure B.7: Simulation results of the Lucas-Washburn model (LW) and of the fitted upscaled
model for the glycerol experiments. Top row: radius R = 0.25mm. Center row: radius
R = 0.5mm. Bottom row: radius R = 1.0 mm. Red: h-fit; Green: θ-fit; Yellow: both-fit.
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Figure B.8: Simulation results of the Lucas-Washburn model (LW) and of the fitted upscaled
(top row) and extended (bottom row) models for the Soltrol 170 experiments at radius R =
0.375mm. Red: h-fit; Green: θ-fit; Yellow: both-fit.
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Figure B.9: Simulation results of the Lucas-Washburn model (LW) and of the fitted upscaled
(top row) and extended (bottom row) models for the Soltrol 170 experiments at radius R =
0.5mm. Red: h-fit; Green: θ-fit; Yellow: both-fit.
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Figure B.10: Simulation results of the Lucas-Washburn model (LW) and of the fitted upscaled
(top row) and extended (bottom row) models for the Soltrol 170 experiments at radius R =
0.65mm. Red: h-fit; Green: θ-fit; Yellow: both-fit.
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R [mm] Upscaled Extended
(fit) η χ2

ν η λ χ2
ν η χ2

ν η λ χ2
ν

0.375 (h) 0.451 0.558 1.017 0.288 0.051 0.162 0.058 0.329 0.043 0.023
0.375 (θ) 0.414 1.981 0.414 5e-11 2.013 0.377 2.054 0.377 1e-11 2.088
0.375 (b) 0.416 1.252 0.413 0.016 1.244 0.367 1.143 0.357 0.045 1.041

0.5 (h) 0.924 2.433 2.081 5* 0.222 0.111 0.153 0.548 0.123 2.7e-3
0.5 (θ) 0.605 2.599 0.516 0.683 1.349 0.498 0.037 0.498 7e-11 0.039
0.5 (b) 0.637 2.738 0.637 4e-3 2.767 0.476 2.249 0.463 0.070 2.039

0.65 (h) 4.036 1.147 5.228 5* 0.436 2.849 0.234 3.334 0.149 0.197
0.65 (θ) 1.488 3.524 1.461 0.248 3.232 1.052 4.595 1.052 6e-12 4.683
0.65 (b) 1.907 6.552 1.907 7e-10 6.612 1.248 4.203 1.248 7e-10 4.242

*) Maximal allowed value in the fitting procedure, to avoid unphysically large slip lengths.

Table B.6: The dynamic coefficient η, slip length λ and reduced residuals χ2
ν for the different

fits (h: height, θ: contact angle, b: both) of the upscaled and extended models, for the water
experiments.
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Figure B.11: Simulation results of the Lucas-Washburn model (LW) and of the fitted up-
scaled (top row) and extended (bottom row) models for the water experiments at radius
R = 0.375mm. Red: h-fit; Green: θ-fit; Yellow: both-fit. Black dashed: h-fit including slip
(a: λ = 0.29, b: λ = 0.04).
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Figure B.12: Simulation results of the Lucas-Washburn model (LW) and of the fitted upscaled
(top row) and extended (bottom row) models for the water experiments at radius R = 0.5mm.
Red: h-fit; Green: θ-fit; Yellow: both-fit. Black dashed: h-fit including slip (a: λ = 5, b:
λ = 0.12). Blue dashed: θ-fit including slip (c: λ = 0.68).
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Figure B.13: Simulation results of the Lucas-Washburn model (LW) and of the fitted upscaled
(top row) and extended (bottom row) models for the water experiments at radius R = 0.65mm.
Red: h-fit; Green: θ-fit; Yellow: both-fit. Blue dashed: h-fit including slip (a: λ = 5, b:
λ = 0.15). Red dashed: θ-fit including slip (c: λ = 0.25).
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