
Linearization and Domain

Decomposition Methods for

Two-Phase Flow in Porous Media

Involving Dynamic Capillarity and

Hysteresis

S.B. Lunowa, I.S. Pop, B. Koren

UHasselt Computational Mathematics Preprint

Nr. UP-20-03

Feb. 06, 2020



Linearization and Domain Decomposition Methods for
Two-Phase Flow in Porous Media Involving Dynamic

Capillarity and Hysteresis?

Stephan Benjamin Lunowaa,∗, Iuliu Sorin Popa,b, Barry Korenc

aComputational Mathematics, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
bDepartment of Mathematics, University of Bergen, Norway

cDepartment of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513,
5600MB Eindhoven, The Netherlands

Abstract

We discuss two linearization and domain decomposition methods for mathematical
models for two-phase flow in a porous medium. The medium consists of two adja-
cent regions with possibly different parameterizations. The model accounts for non-
equilibrium effects like dynamic capillarity and hysteresis. The θ-scheme is adopted
for the temporal discretization of the equations yielding nonlinear time-discrete equa-
tions. For these, we propose and analyze two iterative schemes, which combine a sta-
bilized linearization iteration of fixed-point type, the L-scheme, and a non-overlapping
domain decomposition method. First, we prove the existence of unique solutions to the
problems defining the linear iterations. Then, we give the rigorous convergence proof
for both iterative schemes towards the solution of the time-discrete equations.

The developed schemes are independent of the spatial discretization or the mesh
and avoid the use of derivatives as in Newton based iterations. Their convergence
holds independently of the initial guess, and under mild constraints on the time step.
The numerical examples confirm the theoretical results and demonstrate the robustness
of the schemes. In particular, the second scheme is well suited for models incorporating
hysteresis. Therefore, the schemes can be easily implemented for realistic applications.
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1. Introduction

Porous media flow has been a research field of ongoing interest for years with
prominent applications such as CO2 storage, groundwater pollution and enhanced oil
recovery. Understanding the underlying phenomena is crucial for the prediction of
these subsurface processes. But measurements are very expensive, if feasible at all, so
that mathematical modeling and simulation are the most important tools to gain further
insight. The mathematical models typically consist of coupled nonlinear differential
equations, which may degenerate and change type in an a-priori unknown manner, de-
pending on the solution itself. While the complexity increases further when dynamic
and hysteretic effects are incorporated, largely varying or even discontinuous physi-
cal properties pose additional difficulties. Therefore, there is a huge demand for the
mathematical design and analysis of suitable, robust computational methods.

Newton based solvers cannot be applied directly to these problems due to severe
constraints on the time step sizes to ensure convergence [1]. A simple fixed-point type
iteration, the L-scheme, has been proposed as alternative. The high robustness of this
method comes at the price of a slower, only linear convergence. This approach is
independent of the spatial discretization. It was combined with the (mixed) finite ele-
ment method in [2, 3] for Richards’ equation with equilibrium capillary pressure and
two-phase flow with dynamic capillarity, respectively. This approach was used in [4]
as a preconditioner for the Newton method. In [5], the L-scheme was used together
with a discontinuous Galerkin method for the two-phase system with dynamic effects,
neglecting hysteresis. A multi-point flux approximation finite volume method was ap-
plied in [6] for two-phase flow incorporating dynamic capillarity. Whereas the analysis
is commonly accomplished assuming Lipschitz continuous parameter functions, it was
extended in [7, 8] to Richards’ and two-phase equations, involving only Hölder contin-
uous coefficients, such as the often used van Genuchten-Mualem parameterization.

In the situation of layered soil, it seems natural to additionally apply a domain de-
composition method to decouple the essentially different layers and thereby speeding
up the convergence. Though stemming from 1870 [9], domain decomposition meth-
ods became subject to intensive research only 100 years later, starting with [10, 11].
Henceforth, it became used and optimized for a wide range of applications, see e.g.
[12–16]. In [17], a non-overlapping domain decomposition method was analyzed for
nonlinear convection-diffusion equations in a time-continuous setting. Such methods
can be also used after temporal discretization for porous media equations, as proposed
in [18, 19] for a simplistic setting, while Richards’ equation and the two-phase flow
equations were considered in [20, 21], where a-posteriori error estimates and multirate
time stepping methods were derived. In [22, 23], the domain decomposition was inte-
grated in the linearization process for both Richards’ equation and two-phase flow, and
the convergence is proved rigorously.

Here, we propose two linearization and domain decomposition schemes for two-
phase flow in block-heterogeneous porous media. The model includes dynamic effects
and hysteresis in the capillary pressure formulation. These methods are independent of
the concrete space discretization and avoid the use of derivatives as in Newton based it-
erations. By maintaining the formulation of the equations in physical variables, instead
of using the Kirchhoff transformation, these schemes are particularly accessible for di-
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rect application in the engineering context. This work generalizes and substantiates the
preliminary results reported in [24, 25].

This article is structured in the following way: The two-phase flow model, the no-
tation and the assumptions are introduced in Section 2. In Section 3, the temporal
discretization by the implicit θ-scheme is stated. Based on this, the iterative schemes
for finding the solutions to the nonlinear semi-discrete equations are derived. The anal-
ysis in Section 4 contains proofs for the existence of unique solutions to the problems
defining the linear iterations and for the convergence of the iterative solutions. Sec-
tion 5 addresses the numerical validation of the theoretical results by several examples
in two spatial dimensions. Finally, Section 6 completes this work with a discussion and
outlook.

2. Mathematical Model of Non-Equilibrium Two-Phase Flow in Porous Media

Let the domain Ω ⊂ Rd for d ∈ N with a Lipschitz boundary ∂Ω and the final
time T > 0 be fixed. The domain is partitioned into two disjoint subdomains Ω1 and
Ω2 with Lipschitz boundaries ∂Ωl and outer normal vectors νl for l ∈ {1, 2}, which
henceforth denotes the subdomain index. Furthermore, the subdomains are separated
by the interface Γ = Ω \ (Ω1 ∪ Ω2), assumed to be a (d − 1)-dimensional manifold
(see also Fig. 1). Note that the extension of this and all the following to more than
two subdomains is straightforward, see [22, Rem. 3 & Sec. 4.4]. All the following
quantities can depend on their position in the domain, but we suppress this dependence
for the ease of presentation. In each subdomain Ωl, the dimensionless formulation

Ω ∈ Rd

Ω1 Ω2
Γ

ν1

ν2

Figure 1: Schematic sketch of a block-heterogeneous domain Ω = Ω1 ∪ Γ ∪Ω2 with interface Γ.

for flow of two immiscible, incompressible phases through a stationary, rigid porous
medium is governed by the mass balance equations

−φl∂t sl + ∇·un,l = qn,l in Ωl × (0,T ), (2.1)
φl∂t sl + ∇·uw,l = qw,l in Ωl × (0,T ), (2.2)

where φl ∈ (0, 1) is the medium porosity and sl is the saturation of the wetting phase
(note that in a two-phase system sn + sw = 1, i.e. only one saturation is necessary). The
source rate of the α-phase (α ∈ {n,w}) is denoted by qα,l. The specific discharge uα,l
of the α-phase incorporates the intrinsic permeability Kl, which is a second rank tensor
for anisotropic media, and the relative mobility λα,l due to the extended Darcy law,

uα,l = −λα,l(sl)Kl∇pα,l in Ωl × (0,T ). (2.3)
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Here, pα,l denotes the pressure in the α-phase. Note that addition of (2.1) and (2.2)
implies that the total discharge un,l + uw,l is divergence free whenever the total source
rate qn,l + qw,l vanishes.

At the interface Γ separating the two subdomains, we assume that the normal flux
and the pressure of each phase are continuous, i.e. for α ∈ {n,w}

uα,1 · ν1 = −uα,2 · ν2, pα,1 = pα,2 on Γ × (0,T ). (2.4)

Remark 2.1 (Interface conditions). The continuity of the normal fluxes follows di-
rectly from mass conservation. The continuity of the phase pressure is valid, if the
phase is present at both sides of the interface. This is not necessarily valid any more
for so-called entry-pressure models, when the non-wetting phase is absent at one side
of the interface, as shown in [26–28] for standard models and [29] for dynamic cap-
illary pressure. To the best of our knowledge, conditions for entry-pressure models
including both, dynamic and hysteretic effects, have not yet been proposed or derived.

Typically, one assumes that the phase-pressure difference pn − pw is a function of
the wetting saturation, the so-called equilibrium capillary pressure pc(sw), which can
be obtained by experiments under quasi-equilibrium conditions. But the experimental
results reported e.g. in [30–33] are ruled out by this standard model. To deal with this,
non-equilibrium models incorporating dynamic effects and hysteresis were studied e.g.
in [34–40]. Here, we consider the play-type hysteresis model proposed in [41, 42],

pn,l − pw,l ∈ pc,l(sl) − γl sign(∂t sl) − τl(sl)∂t sl, (2.5)

where the non-negative function τl and γl ≥ 0 model the effects due to dynamic capil-
larity and hysteresis, respectively. We refer to [43–46] for a mathematical investigation
of saturation overshoots or finger-type profiles. For the following analysis, we use a
regularization Φδ,l of the scaled sign function to obtain a single-valued relation and
to ensure strict monotonicity. For fixed, small parameter δ > 0 and l ∈ {1, 2}, the
regularization is given by

Φδ,l(ξ) =

γl sign(ξ) if |ξ| ≥ δ,
γl

ξ
δ

if |ξ| < δ.
The regularized non-equilibrium capillary pressure condition then becomes

pn,l − pw,l = pc,l(sl) − Φδ,l(∂t sl) − ∂tTl(sl) in Ωl × (0,T ), (2.6)

where Tl denotes the primitive of τl.
For uniformly positive τ, the multi-valued equation (2.5) can be solved in ∂t s, as

done in [47–49]. This yields a single-valued function Ψ̂l, such that one can rewrite the
capillary pressure relation in the inverted form ∂t sl = Ψ̂l(sl, pn,l−pw,l). This formulation
has the major advantage that it imposes explicit values for the time derivative of the
saturation, and avoids a multi-valued relation like (2.5). Here, we consider the inverse
capillary pressure condition only for constant τl > 0, which then becomes

∂t sl = Ψl(pn,l − pw,l − pc,l(sl)) in Ωl × (0,T ), (2.7)
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where

Ψl(p) =


−p+γl
τl

if p ≥ γl,

0 if |p| < γl,
−p−γl
τl

if p ≤ −γl.

A regularization of Ψl matching Φδ,l was used in [43, 45, 48, 50] to prove the existence
of weak solutions for δ→ 0, and to develop appropriate numerical schemes. Moreover,
it is possible to only include hysteresis and no dynamic effects. Then, Ψl has to be
regularized by including e.g. a small dynamic effect, namely taking τl = ε > 0.

Remark 2.2. Richards’ equation models unsaturated flow in porous media [51], based
on the simplification that the non-wetting pressure pn is constant, such that (2.1) can
be neglected. Although this paper focuses on the general two-phase flow equations, the
results can be directly transferred to Richards’ equation.

2.1. Notation

We denote by L2(X), H1(X), H1
0(X) and Hdiv(X) the standard Hilbert spaces on

X ∈ {Ω,Ω1,Ω2}. H1/2(Γ) consists of all traces of functions in H1(Ω). This trace on Γ

of w ∈ H1(Ω) is denoted by w|Γ. For any function f ∈ L2(Ω), fl := f |Ωl denotes the
restriction to Ωl for l ∈ {1, 2}. Vice versa, a pair of functions ( f1, f2) ∈ L2(Ω1)× L2(Ω2)
is identified with the natural L2-extension f on the whole domain Ω. For simplicity,
we only consider homogeneous Dirichlet boundary conditions at ∂Ω for the pressures,
so that the following spaces will be used

Wl :=
{
w ∈ H1(Ωl) : w|∂Ωl∩∂Ω ≡ 0

}
, W := L2(Ω) × [W1 ×W2]2.

At the expense of additional technical effort, it is possible to extend the results in this
article to other types of boundary conditions. Since ∂Ω ∩ ∂Ωl is either empty or has
positive (d−1)-measure, the functions inWl vanish on this common part of the bound-
ary. Note that w ∈ H1

0(Ω) is equivalent to (w1,w2) ∈ W1 ×W2 with w1|Γ ≡ w2|Γ. This
is a direct consequence of the trace theorem. For the continuity of the pressure across
the interface Γ, we introduce the space

V := L2(Ω) × [H1
0(Ω)]2.

Moreover, the space for the interface conditions on Γ is given by

H1/2
00 (Γ) :=

{
w ∈ H1/2(Γ) : ∃v ∈ H1

0(Ω) : v|Γ ≡ w
}
.

It is a Hilbert space as the quotient space H1
0(Ω)/ ker(·|Γ), see [52, Prop. 2.3]. The L2

inner product and norm on X ∈ {Ω1,Ω2,Γ} are denoted by (·, ·)X and ‖·‖X . Analogously,
〈·, ·〉Γ stands for the dual pairing on H1/2

00 (Γ) with H1/2
00 (Γ)′ via the Gelfand triple with

L2(Γ). Here and in the following, the dual of a Banach space B is denoted by B′.
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2.2. Assumptions on the Coefficient Functions
In the following, we summarize all assumptions on the coefficient functions, which

are mostly also found in realistic physical systems. Note that we explicitly exclude
the degeneration of the equations by requiring positive mobilities λα and a Lipschitz
continuous equilibrium capillary pressure pc. In realistic applications, where these
assumptions do not hold, one can use a regularization like in [49, 53–56], where the
convergence of the solutions of the regularized equations towards the solution of the
degenerated equations and the existence of the latter solutions were proved.

Assumption 1. For l ∈ {1, 2} and α ∈ {n,w}, assume that

• Kl : Ωl → Rd×d is symmetric and there exist constants Kl,Kl ∈ R+ such that
Kl‖ξ‖2Rd ≤ ξT Kl(x)ξ ≤ Kl‖ξ‖2Rd for all x ∈ Ωl and ξ ∈ Rd,

• λα,l : R → R+, is Lipschitz continuous with Lipschitz constant Lλα,l and there
exist mλα,l,Mλα,l ∈ R+ such that mλα,l ≤ λα,l(s) ≤ Mλα,l for all s ∈ R,

• qα,l : [0,T ]→ L2(Ωl) is continuous,

• pc,l : R × Ωl → R is strictly monotonically decreasing in the first variable,
Lipschitz continuous and constants mpc,l, Lpc,l ∈ R+ exist such that mpc,l |r − s| ≤∣∣∣pc,l(r, x) − pc,l(s, x)

∣∣∣ ≤ Lpc,l |r − s| for all r, s ∈ R and x ∈ Ωl,

• τl : R → R+ is measurable and there exist constants mT,l, LT,l ∈ R+ such that
mT,l < τl(s) < LT,l for all s ∈ R; Its primitive Tl : R → R is bi-Lipschitz
continuous and strictly monotonically increasing,

• γl : Ωl → [0,∞) is Lipschitz continuous and bounded by a constant Mγ,l ∈ R+.

Remark 2.3. The extension of λα,l, pc,l and τl to any value s ∈ R is necessary because
the non-degenerated, non-equilibrium model does not satisfy a maximum principle
due to possible overshoots. However, the solutions of the degenerated model remain
(essentially) bounded, see [54, 55]. Nevertheless, these extensions can be constructed
naturally, only assuming Lipschitz continuity on [0, 1].

Remark 2.4. By Assumption 1, Φδ,l : R × Ωl → R is monotonically increasing in the
first variable and Lipschitz continuous with Lipschitz constant LΦδ,l = Mγ,l/δ. Further-
more for constant τl > 0, Ψl : R × Ωl → R is Lipschitz continuous, strictly monotoni-
cally decreasing in the first variable, and it holds |Ψl(p, x) − Ψl(q, x)| ≤ LΨ,l |p − q| for
all p, q ∈ R, where LΨ,l = τ−1

l .

The system of nonlinear equations (2.1)–(2.4) with either (2.6) or (2.7) forms an
initial-boundary-value problem in the primary variables s, pn and pw for given initial
data s|t=0 = s0 ∈ L∞(Ω; [0, 1]).

Remark 2.5 (Existence and boundedness of unique weak solutions). For the exis-
tence of unique weak solutions to (2.1)–(2.4) under either condition (2.6) or (2.7), with
respect to initial and boundary conditions, we refer to [48, 49, 57]. The existence of
solutions was proved in [48], while the uniqueness of the solutions to these equations
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for δ = 0 was derived in [49, 57]. Note that additional assumptions on the regularity
of the coefficient functions and the domain are necessary for this. Furthermore, the
sequence of solutions to the regularized equations converge (weakly) towards the solu-
tion of the original equations for δ → 0, as shown in [50]. For the following analysis,
we emphasize that s ∈ L∞(0,T ; C0,α(Ω)) and pn, pw ∈ L∞(0,T ; C1,α(Ω)) was proved in
[49, Thm. 2.1] under the above-mentioned regularity assumptions.

3. Temporal Discretization and Iterative Schemes

First, we present the discretization in time by the θ-scheme. In particular, we are
interested in the unconditionally stable situation when θ ≥ 1/2. For θ = 1, this boils
down to the first-order backward Euler method, while θ = 1/2 coincides with the
second-order Crank-Nicolson method. The resulting semi-discrete equations are non-
linear, and thus iterative methods are necessary to find the solutions. Therefore, we
propose two linearization and domain decomposition schemes (LDD-schemes).

3.1. Discretization in Time
For given N ∈ N, let the fixed time step length be ∆t := T

N . At time tk := k∆t,
the approximations of the saturation, pressures and source terms are denoted sk, pk

α, q
k
α.

With this, the auxiliary quantities at time tk are

uk
α,l := −λα,l(sk

l )Kl∇pk
α,l, pk

c,l := pc,l(sk
l ), Ψk

l := Ψl(pk
n,l − pk

w,l − pk
c,l).

For θ ∈ (0, 1], the θ-averaged quantities are defined by (·)k,θ := θ(·)k + (1 − θ)(·)k−1, e.g.
uk,θ
α,l = θuk

α,l + (1 − θ)uk−1
α,l . Then, the interface conditions (2.4) directly become

uk,θ
α,1 · ν1 = −uk,θ

α,2 · ν2, pk
α,1 = pk

α,2 on Γ. (3.1)

The time-discrete counterparts of (2.1) and (2.2) are tested with ψn, ψw ∈ H1
0(Ω). After

partial integration using (3.1) and summation over l ∈ {1, 2}, the time-discrete, weak
equations read

2∑
l=1

(
− φl

(
sk

l −sk−1
l

∆t , ψn,l

)
Ωl

−
(
uk,θ

n,l , ∇ψn,l

)
Ωl

)
=

(
qk,θ

n,l , ψn

)
Ω
, (3.2)

2∑
l=1

(
φl

(
sk

l −sk−1
l

∆t , ψw,l

)
Ωl

−
(
uk,θ

w,l, ∇ψw,l

)
Ωl

)
=

(
qk,θ

w,l, ψw

)
Ω
, (3.3)

pk,θ
n,l − pk,θ

w,l = pk,θ
c,l − Φδ,l

(
sk

l −sk−1
l

∆t

)
− Tl(sk

l )−Tl(sk−1
l )

∆t in L2(Ωl) for l ∈ {1, 2}, (3.4)

sk
l −sk−1

l
∆t = θΨk

l + (1 − θ)Ψk−1
l in L2(Ωl) for l ∈ {1, 2}. (3.5)

Observe that either (3.4) or (3.5) will be used below, and thus there are the following
two semi-discrete formulations.

Problem 1 (Semi-discrete weak formulation I). Given (sk−1, pk−1
n , pk−1

w ) ∈ V, find
(sk, pk

n, pk
w) ∈ V such that (3.2)–(3.4) hold for all ψn, ψw ∈ H1

0(Ω).

7



Problem 2 (Semi-discrete weak formulation II). Given (sk−1, pk−1
n , pk−1

w ) ∈ V, find
(sk, pk

n, pk
w) ∈ V such that (3.2), (3.3), and (3.5) hold for all ψn, ψw ∈ H1

0(Ω).

In particular, the second formulation is well suited for hysteretic models. In the absence
of hysteresis, the first formulation is more natural and can be straightforwardly used
even for vanishing τ. Note that both weak semi-discrete problems are well defined.

Remark 3.1. If (sk, pk
n, pk

w) ∈ V is a solution of Problem 1 or Problem 2, pk
α,1|Γ =

pk
α,2|Γ holds by the definition ofV. Since sk

l , s
k−1
l , qk,θ

α ∈ L2(Ωl), testing (3.2) and (3.3)
with arbitrary ψα,l ∈ C∞0 (Ωl) implies ∇·uk,θ

α,l ∈ L2(Ωl), i.e. uk,θ
α,l ∈ Hdiv(Ωl). This shows

that

∇·uk,θ
n,l = φl

sk
l −sk−1

l
∆t + qk,θ

n,l , ∇·uk,θ
w,l = −φl

sk
l −sk−1

l
∆t + qk,θ

w,l in L2(Ωl). (3.6)

Therefore, the normal trace lemma [58, Lemma III.1.1] yields uk,θ
α,l ·νl ∈ H1/2(∂Ωl)′ and

integration by parts in (3.2) and (3.3) implies uk,θ
α,1 · ν1 = −uk,θ

α,2 · ν2 in H1/2
00 (Γ)′.

Problems 1 and 2 are nonlinear systems of mixed elliptic algebraic equations with
possibly discontinuous coefficients. This is evident when (3.5) is substituted into (3.2)
and (3.3). One may prove the existence of (unique) solutions analogously to the time-
continuous case (Remark 2.5) or the fully discrete case in [59] for equilibrium capillary
pressure. By this, the time-discrete pressure gradients should be bounded – correspond-
ing to the results in [49, 59]. However, this lies out of the scope of this article.

3.2. Linearization and Domain Decomposition Schemes
To decouple the problems on the subdomains, and thereby to account for the pos-

sible discontinuities at the interface Γ, we introduce a non-overlapping domain decom-
position method. Following the ideas in [11, 60], we combine the interface conditions
(3.1) by a (free to be chosen) parameter LΓ ∈ (0,∞) to define

gα,l := uk,θ
α,l · νl − LΓ pk

α,l.

With these Robin type expressions, the interface conditions (3.1) at Γ read

gα,3−l = −2LΓ pk
α,l − gα,l

for l ∈ {1, 2}. This formulation is equivalent to (3.1) for any LΓ , 0, cf. [22, Remark 1
& 2]. Assuming that for some i ∈ N the approximations (sk,i−1, pk,i−1

n , pk,i−1
w ) ∈ W and

gi−1
α,l ∈ L2(Γ)4 for l ∈ {1, 2} and α ∈ {n,w} are known, the linearized fluxes and interface

conditions are defined by

uk,θ,i
α,l := −θλα,l(sk,i−1

l )Kl∇pk,i
α,l − (1 − θ)uk−1

α,l , gi
α,l := −2LΓ pk,i−1

α,3−l − gi−1
α,3−l.

With these, (3.2) and (3.3) become linear and decouple into

−φl

(
sk,i

l −sk−1
l

∆t , ψn,l

)
Ωl

−
(
uk,θ,i

n,l , ∇ψn,l

)
Ωl

+
(
LΓ pk,i

n,l + gi
n,l, ψn,l

)
Γ

=
(
qk,θ

n,l , ψn,l

)
Ωl
, (3.7)

φl

(
sk,i

l −sk−1
l

∆t , ψw,l

)
Ωl

−
(
uk,θ,i

w,l , ∇ψw,l

)
Ωl

+
(
LΓ pk,i

w,l + gi
w,l, ψw,l

)
Γ

=
(
qk,θ

w,l, ψw,l

)
Ωl
, (3.8)

gi
α,l = −2LΓ pk,i−1

α,3−l − gi−1
α,3−l in L2(Γ). (3.9)
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For (3.7)–(3.9), we expect to iteratively find the solution of the semi-discrete equa-
tions, if the limit exists. Formally, one can show the following limit equivalence.

Lemma 3.1 (Limit equations). Let k ∈ N be fixed and assume that (sk, pk
n, pk

w) ∈ W
and gα,l ∈ H1/2

00 (Γ)′ for l ∈ {1, 2} and α ∈ {n,w} exist, such that it holds

−φl

(
sk

l −sk−1
l

∆t , ψn,l

)
Ωl

−
(
uk,θ

n,l , ∇ψn,l

)
Ωl

+
〈
LΓ pk

n,l + gn,l, ψn,l

〉
Γ

=
(
qk,θ

n,l , ψn,l

)
Ωl
, (3.10)

φl

(
sk

l −sk−1
l

∆t , ψw,l

)
Ωl

−
(
uk,θ

w,l, ∇ψw,l

)
Ωl

+
〈
LΓ pk

w,l + gw,l, ψw,l

〉
Γ

=
(
qk,θ

w,l, ψw,l

)
Ωl
, (3.11)〈

gα,l, ψα,l
〉

Γ =
〈
−2LΓ pk

α,3−l − gα,3−l, ψα,l
〉

Γ
, (3.12)

for l ∈ {1, 2} and all ψn, ψw ∈ H1
0(Ω), as well as either (3.4) or (3.5). Then, the interface

conditions uk,θ
α,1 · ν1 = −uk,θ

α,2 · ν2 in H1/2
00 (Γ)′ and pk

α,1|Γ = pk
α,2|Γ are satisfied, and thus

(sk, pk
n, pk

w) ∈ V is a solution of Problem 1 or Problem 2, respectively. Moreover, it
holds gα,l = uk,θ

α,l · νl − LΓ pk
α,l in H1/2

00 (Γ)′.
Vice versa, if (sk, pk

n, pk
w) ∈ V is a solution of Problem 1 or Problem 2, and we define

gα,l := uk,θ
α,l · νl − LΓ pk

α,l in H1/2
00 (Γ)′, (3.13)

then (sk, pk
n, pk

w) and gα,l, l ∈ {1, 2} and α ∈ {n,w}, solve the limit system (3.10)–(3.12).

Proof. Subtracting the equations (3.12) for l ∈ {1, 2} directly yields pk
α,1|Γ = pk

α,2|Γ,
whereas adding up these equations leads to gα,1 + gα,2 = −LΓ(pk

α,1 + pk
α,2). Using this

in the sum of (3.10) over l ∈ {1, 2} gives (3.2). Analogously, one obtains (3.3) from
(3.11). Together with (3.4) or (3.5), this is equivalent to Problem 1 or Problem 2, re-
spectively. Furthermore, integration by parts in (3.10) and (3.11) using (3.6) leads to
gα,l = uk,θ

α,l · νl − LΓ pk
α,l in H1/2

00 (Γ)′.
Conversely, if (sk, pk

n, pk
w) solves Problem 1 or Problem 2, then the continuity of pres-

sures and normal fluxes at Γ holds, and thus one gets

gα,l = uk,θ
α,l · νl − LΓ pk

α,l = −uk,θ
α,3−l · ν3−l − LΓ pk

α,3−l = −2LΓ pk
α,3−l − gα,3−l

in H1/2
00 (Γ)′. Finally, (3.10) and (3.11) follow from partial integration of (3.2) and (3.3)

using (3.6) and the definition of gα,l. �

The above-shown equivalence of Lemma 3.1 can also be observed for Richards’
equation [22]. We will use this formal limit (3.10)–(3.12) to prove that the solutions
to the LDD-schemes converge towards the solutions of the semi-discrete Problems 1
and 2. Although this convergence is independent of the initial guess, as shown below
in Theorems 4.1 and 4.2, note that the natural choices for the first iteration are

sk,0
l := sk−1

l , pk,0
α,l := pk−1

α,l , g0
α,l := uk−1

α,l · νl − LΓ pk−1
α,l .

The two problems only differ in the used capillary pressure relation, but this will
result in different iterative schemes, as will be seen below. Since the used strategies
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differ, we present each LDD-scheme individually. Nevertheless, the common idea is to
linearize the capillary pressure equations (3.4) and (3.5), and to add stabilization terms
of the form

L(solution of current iteration − solution of last iteration),

which vanish in the limit if the sequence converges.
For Problem 1, we use the stabilization parameters Lp,l,LΦ,l,LT,l ≥ 0, which

must satisfy some mild constraints to guarantee convergence, as shown below in The-
orem 4.1. With these, the stabilized linearization of (3.4) becomes

pk,θ,i
n,l − pk,θ,i

w,l +
(
Lp,l +

LT,l+LΦ,l

∆t

)(
sk,i

l − sk,i−1
l

)
= θpc,l(sk,i−1

l ) + (1 − θ)pk−1
c,l

−Φδ,l

(
sk,i−1

l −sk−1
l

∆t

)
− Tl(sk,i−1

l )−Tl(sk−1
l )

∆t in L2(Ωl), (3.14)

for l ∈ {1, 2}, where pk,θ,i
α,l := θpk,i

α,l + (1 − θ)pk−1
α,l . Clearly, the stabilizing term in (3.14)

vanishes in the case of convergence, and hence the formal limit is (3.4). The iteration
reduces to solving the following problem.

Problem 3 (Weak formulation of the LDD-scheme I). Given (sk−1, pk−1
n , pk−1

w ) ∈ V,
(sk,i−1, pk,i−1

n , pk,i−1
w ) ∈ W and gi−1

α,l ∈ L2(Γ) for l ∈ {1, 2}, α ∈ {n,w}, find (sk,i, pk,i
n , pk,i

w ) ∈
W and gi

α,l ∈ L2(Γ) for l ∈ {1, 2} and α ∈ {n,w}, such that the equations (3.7)–(3.9) and
(3.14) hold for all ψn,l, ψw,l ∈ Wl and l ∈ {1, 2}.

For Problem 2, we define the semi-linearized inverted capillary pressure equation
based on (3.5) and Ψ

k,i
l := Ψl(pk,i−1

n,l − pk,i−1
w,l − pc,l(sk,i

l )) by

sk,i
l −sk−1

l
∆t = θΨk,i

l + (1 − θ)Ψk−1
l in L2(Ωl) for l ∈ {1, 2}. (3.15)

Note that sk,i
l still arises implicitly. However, (3.15) defines a contraction, as shown

in Lemma 4.2. Therefore, it can be easily solved by directly applying the associated
fixed-point iteration or any other suited method such as the Newton-Raphson iteration.

Note that this allows to use sk,i
l for the definition of the flux

uk,θ,i
α,l − θλα,l(sk,i

l )Kl∇pk,i
α,l − (1 − θ)uk−1

α,l .

Substitution of (3.15) into (3.7) and (3.8) leads then to a nonlinear elliptic system
of equation in pn,l and pw,l. Therefore, we stabilize these equations using only one
stabilization parameter Lp,l > 0, which again must satisfy a mild constraint discussed
in Section 4.2. In particular, the termLp,l

(
pk,i

n,l−pk,i−1
n,l −pk,i

w,l+pk,i−1
w,l

)
is added to (3.7) and

subtracted from (3.8). Again, this term vanishes in case of convergence. Altogether,
the second LDD-scheme is constituted by iteratively solving the following problem.

Problem 4 (Weak formulation of the LDD-scheme II). Given (sk−1, pk−1
n , pk−1

w ) ∈ V,
(sk,i−1, pk,i−1

n , pk,i−1
w ) ∈ W and gi−1

α,l ∈ L2(Γ) for l ∈ {1, 2}, α ∈ {n,w}, find (sk,i, pk,i
n , pk,i

w ) ∈

10



W and gi
α,l ∈ L2(Γ) for l ∈ {1, 2}, α ∈ {n,w}, such that it holds

−φl

(
sk,i

l −sk−1
l

∆t , ψn,l

)
Ωl

+Lp,l

(
pk,i

n,l − pk,i−1
n,l − pk,i

w,l + pk,i−1
w,l , ψn,l

)
Ωl

−
(
uk,θ,i

n,l , ∇ψn,l

)
Ωl

+
(
LΓ pk,i

n,l + gi
n,l, ψn,l

)
Γ

=
(
qk,θ

n,l , ψn,l

)
Ωl
, (3.16)

φl

(
sk,i

l −sk−1
l

∆t , ψw,l

)
Ωl

− Lp,l

(
pk,i

n,l − pk,i−1
n,l − pk,i

w,l + pk,i−1
w,l , ψw,l

)
Ωl

−
(
uk,θ,i

w,l , ∇ψw,l

)
Ωl

+
(
LΓ pk,i

w,l + gi
w,l, ψw,l

)
Γ

=
(
qk,θ

w,l, ψw,l

)
Ωl
, (3.17)

gi
α,l = −2LΓ pk,i−1

α,3−l − gi−1
α,3−l in L2(Γ), (3.18)

sk,i
l −sk−1

l
∆t = θΨk,i

l + (1 − θ)Ψk−1
l in L2(Ωl), (3.19)

for all ψn,l, ψw,l ∈ Wl and l ∈ {1, 2}.

4. Existence and Convergence of the Solutions to the LDD-schemes

In the following, Problems 3 and 4 defining the LDD-schemes are analyzed. The
existence of unique solutions to these problems and the convergence towards the solu-
tions of the semi-discrete equations is rigorously proved. The ideas of the proofs are
based on [5, 22, 23], where similar models are discussed, in which either hysteresis or
both dynamic capillarity and hysteresis are absent. In comparison to [24], the proofs
are generalized and corrected. The LDD-scheme I is presented first, the second one
afterwards.

4.1. Existence and Convergence of the Solutions to the LDD-scheme I
The existence of a unique solution to Problem 3 is a direct consequence of the

linearization.

Lemma 4.1. Problem 3 has a unique solution if Assumption 1 is fulfilled and θ ∈ (0, 1].

Proof. Since pk,i−1
α,l |Γ ∈ L2(Γ), (3.9) yields unique gi

α,l ∈ L2(Γ) for l ∈ {1, 2} and α ∈
{n,w}. Further, (3.14) can be rewritten as

sk,i
l −sk−1

l
∆t = −βl

(
pk,i

n,l − pk,i
w,l

)
+ f i

l in L2(Ωl), (4.1)

where βl = θ(Lp,l∆t + LT,l + LΦ,l)−1 > 0, and f i
l is independent of any quantity at the

iteration i. Inserting this into the sum of (3.7) and (3.8) leads to

φlβl

(
pk,i

n,l − pk,i
w,l, ψn,l − ψw,l

)
Ωl

+ θ
∑

α∈{n,w}

(
λα,l(sk,i−1

l )Kl∇pk,i
α,l, ∇ψα,l

)
Ωl

+
∑

α∈{n,w}
LΓ

(
pk,i
α,l, ψα,l

)
Γ

=
∑

α∈{n,w}

(
f i
α,l, ψα,l

)
Ωl
−

∑
α∈{n,w}

(
gi
α,l, ψα,l

)
Γ
,

where f i
α,l ∈ L2(Ωl) is independent of any quantity at iteration i for both α ∈ {n,w}.

By the Lax-Milgram lemma, a unique solution (pk,i
n,l, pk,i

w,l) ∈ [Wl]2 exists for l ∈ {1, 2}.
Finally, sk,i

l ∈ L2(Ωl) is uniquely determined by (4.1). �
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To prove the convergence of the LDD-scheme I, we derive a-priory estimates for
the errors between the solution to Problem 3 and the solution of the limit equations.
These estimates yield the convergence for any initial guess.

Theorem 4.1 (Convergence of the LDD-scheme I). Let Assumption 1 be fulfilled and
θ ∈ (0, 1]. Assume that a solution (sk, pk

n, pk
w) ∈ V of Problem 1 exists and satisfies∥∥∥K1/2

l ∇pk
α,l

∥∥∥
L∞(Ωl)

≤ Mpα,l and uk,θ
α,l · νl ∈ L2(Γ). If the stabilization parameters are

sufficiently large and the time step is small enough, i.e.

Lp,l ≥ Lpc ,l

θ
, LT,l ≥ LT,l

2 , LΦ,l ≥ LΦδ,l

2 and ∆t <
φlmpc,l∑

α∈{n,w}
θL2

λα,l
M2

pα,l

mλα,l

,

for l ∈ {1, 2}, the sequence of solutions of Problem 3 converges towards the solution of
Problem 1 independently of the initial guess (sk,0, pk,0

n , pk,0
w ) ∈ W and g0

α,l ∈ L2(Γ) for
l ∈ {1, 2} and α ∈ {n,w}. More precisely, it holds

sk,i
l → sk

l in L2(Ωl), pk,i
α,l → pk

α,l in Wl, gi
α,l ⇀ gα,l in L2(Γ)

for l ∈ {1, 2} and α ∈ {n,w} as i→ ∞.

Remark 4.1. Due to the regularized sign-function, one has LΦδ,l = Mγ,l/δ. This means
that the stabilization parameters and the time step can be chosen independently of the
regularization, except for LΦ,l ≥ Mγ,l/(2δ).

Remark 4.2. The assumptions on the solution of Problem 1 seem rather restrictive, but
as mentioned in Remark 2.5, the solution is expected to fulfill sk

l ∈ C0(Ωl) and pk
α,l ∈

C1(Ωl). Then, one would have λα,l(sk
l )∇pk

α,l ∈ C0(Ωl) and hence these assumptions
would be always fulfilled.

Proof (Theorem 4.1). The iteration errors are defined by

ei
s,l := sk,i

l − sk
l ∈ L2(Ωl), ei

pα,l := pk,i
α,l − pk

α,l ∈ Wl, ei
gα,l := gi

α,l − gα,l ∈ L2(Γ).

Subtraction of the limit equations (3.4) and (3.10)–(3.12) from (3.7)–(3.9) and (3.14)
leads to

−φl

(
ei

s,l

∆t , ψn,l

)
Ωl

+ θ
(
λn,l(sk,i−1

l )Kl∇pk,i
n,l − λn,l(sk

l )Kl∇pk
n,l, ∇ψn,l

)
Ωl

+
(
LΓei

pn,l + ei
gn,l, ψn,l

)
Γ

= 0, (4.2)

φl

(
ei

s,l

∆t , ψw,l

)
Ωl

+ θ
(
λw,l(sk,i−1

l )Kl∇pk,i
w,l − λw,l(sk

l )Kl∇pk
w,l, ∇ψw,l

)
Ωl

+
(
LΓei

pw,l + ei
gw,l, ψw,l

)
Γ

= 0, (4.3)

ei
gα,l = −2LΓei−1

pα,3−l − ei−1
gα,3−l in L2(Γ), (4.4)

θ
(
ei

pn,l − ei
pw,l

)
+

(
Lp,l +

LT,l+LΦ,l

∆t

) (
ei

s,l − ei−1
s,l

)
= θ

(
pc,l(sk,i−1

l ) − pc,l(sk
l )
)

− Tl(sk,i−1
l )−Tl(sk

l )
∆t −

(
Φδ,l

(
sk,i−1

l −sk−1
l

∆t

)
− Φδ,l

(
sk

l −sk−1
l

∆t

))
in L2(Ωl). (4.5)

12



Error estimate on the interface conditions. Using (4.4), the norm of ei
gα,l

is∥∥∥ei
gα,l

∥∥∥2
Γ

= 4LΓ

(
LΓei−1

pα,3−l + ei−1
gα,3−l, ei−1

pα,3−l

)
Γ

+
∥∥∥ei−1

gα,3−l

∥∥∥2
Γ

and thus by index shifting i to i + 1 and l to 3 − l(
LΓei

pα,l + ei
gα,l, ei−1

pα,3−l

)
Γ

= − 1
4LΓ

(∥∥∥ei
gα,l

∥∥∥2
Γ
−

∥∥∥ei+1
gα,3−l

∥∥∥2
Γ

)
. (4.6)

Error estimate on the non-wetting pressure. Testing (4.2) with ψn,l = ei
pn,l

yields

−φl

(
ei

s,l

∆t , ei
pn,l

)
Ωl

+ θ
(
λn,l(sk,i−1

l )Kl∇ei
pn,l, ∇ei

pn,l

)
Ωl

+
(
LΓei

pn,l + ei
gn,l, ei

pn,l

)
Γ

+ θ
(
(λn,l(sk,i−1

l ) − λn,l(sk
l ))Kl∇pk

n,l, ∇ei
pn,l

)
Ωl

= 0.

Since λn,l has the lower bound mλn,l and is Lipschitz continuous, one obtains with the
Cauchy-Schwarz inequality and (4.6)

−φl

(
ei

s,l

∆t , ei
pn,l

)
Ωl

+ θmλn,l

∥∥∥K1/2
l ∇ei

pn,l

∥∥∥2
Ωl
− 1

4LΓ

(∥∥∥ei
gα,l

∥∥∥2
Γ
−

∥∥∥ei+1
gα,3−l

∥∥∥2
Γ

)
≤ θLλn,l

∥∥∥K1/2
l ∇pk

n,l

∥∥∥
L∞(Ωl)

∥∥∥ei−1
s,l

∥∥∥
Ωl

∥∥∥K1/2
l ∇ei

pn,l

∥∥∥
Ωl
.

By Young’s inequality and the bound on the pressure gradient, one gets

−φl

(
ei

s,l

∆t , ei
pn,l

)
Ωl

+
θmλn,l

2

∥∥∥K1/2
l ∇ei

pn,l

∥∥∥2
Ωl

≤
θL2

λn,l
M2

pn,l

2mλn,l

∥∥∥ei−1
s,l

∥∥∥2
Ωl

+
1

4LΓ

(∥∥∥ei
gα,l

∥∥∥2
Γ
−

∥∥∥ei+1
gα,3−l

∥∥∥2
Γ

)
. (4.7)

Error estimate on the wetting pressure. Testing (4.3) with ψw,l = ei
pw,l

and following
the same steps as for the non-wetting pressure equation yields

φl

(
ei

s,l

∆t , ei
pw,l

)
Ωl

+
θmλw,l

2

∥∥∥K1/2
l ∇ei

pw,l

∥∥∥2
Ωl

≤
θL2

λw,l
M2

pw,l

2mλw,l

∥∥∥ei−1
s,l

∥∥∥2
Ωl

+
1

4LΓ

(∥∥∥ei
gw,l

∥∥∥2
Γ
−

∥∥∥ei+1
gw,3−l

∥∥∥2
Γ

)
. (4.8)

Error estimate on the pressure difference. Testing (4.5) with ψp,l = ei
s,l and using the

identity a(a − b) = 1
2 (a2 − b2 + (a − b)2) for the stabilization term yields

θ
(
ei

pn,l − ei
pw,l, ei

s,l

)
Ωl

+
(Lp,l

2 +
LT,l+LΦ,l

2∆t

) (∥∥∥ei
s,l

∥∥∥2
Ωl
−

∥∥∥ei−1
s,l

∥∥∥2
Ωl

+
∥∥∥ei

s,l − ei−1
s,l

∥∥∥2
Ωl

)
=

(
θ
(
pc,l(sk,i−1

l ) − pc,l(sk
l )
)
− Tl(sk,i−1

l )−Tl(sk
l )

∆t , ei−1
s,l

)
Ωl

−
(
Φδ,l

(
sk,i−1

l −sk−1
l

∆t

)
− Φδ,l

(
sk

l −sk−1
l

∆t

)
, ei−1

s,l

)
Ωl

+

(
θ
(
pc,l(sk,i−1

l ) − pc,l(sk
l )
)
− Tl(sk,i−1

l )−Tl(sk
l )

∆t , ei
s,l − ei−1

s,l

)
Ωl

−
(
Φδ,l

(
sk,i−1

l −sk−1
l

∆t

)
− Φδ,l

(
sk

l −sk−1
l

∆t

)
, ei

s,l − ei−1
s,l

)
Ωl

.
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Since pc,l, Tl and Φδ,l are Lipschitz-continuous and monotone, one gets

θ
(
ei

pn,l − ei
pw,l, ei

s,l

)
Ωl

+
(Lp,l

2 +
LT,l+LΦ,l

2∆t

) (∥∥∥ei
s,l

∥∥∥2
Ωl
−

∥∥∥ei−1
s,l

∥∥∥2
Ωl

+
∥∥∥ei

s,l − ei−1
s,l

∥∥∥2
Ωl

)
+ θ

2

(∣∣∣pc,l(sk,i−1
l ) − pc,l(sk

l )
∣∣∣ , ∣∣∣ei−1

s,l

∣∣∣)
Ωl

+ θ
2Lpc ,l

∥∥∥pc,l(sk,i−1
l ) − pc,l(sk

l )
∥∥∥2

Ωl

+ ∆t
LΦδ,l

∥∥∥∥∥Φδ,l

(
sk,i−1

l −sk−1
l

∆t

)
− Φδ,l

(
sk

l −sk−1
l

∆t

)∥∥∥∥∥2

Ωl

+ ∆t
LT,l

∥∥∥∥∥ Tl(sk,i−1
l )−Tl(sk

l )
∆t

∥∥∥∥∥2

Ωl

≤
(
θ
∥∥∥pc,l(sk,i−1

l ) − pc,l(sk
l )
∥∥∥

Ωl
+

∥∥∥∥∥ Tl(sk,i−1
l )−Tl(sk

l )
∆t

∥∥∥∥∥
Ωl

+

∥∥∥∥∥Φδ,l

(
sk,i−1

l −sk−1
l

∆t

)
− Φδ,l

(
sk

l −sk−1
l

∆t

)∥∥∥∥∥
Ωl

)∥∥∥ei
s,l − ei−1

s,l

∥∥∥
Ωl
.

Using the lower bound on the decrease of pc,l and Young’s inequality, one obtains

θ
(
ei

pn,l − ei
pw,l, ei

s,l

)
Ωl

+
(Lp,l

2 +
LT,l+LΦ,l

2∆t

) (∥∥∥ei
s,l

∥∥∥2
Ωl
−

∥∥∥ei−1
s,l

∥∥∥2
Ωl

)
+

θmpc ,l

2

∥∥∥ei−1
s,l

∥∥∥2
Ωl

≤
(

θ2

2Lp,l
− θ

2Lpc ,l

) ∥∥∥pc,l(sk,i−1
l ) − pc,l(sk

l )
∥∥∥2

Ωl
+

(
∆t

2LT,l
− ∆t

LT,l

) ∥∥∥∥∥ Tl(sk,i−1
l )−Tl(sk

l )
∆t

∥∥∥∥∥2

Ωl

+

(
∆t

2LΦ,l
− ∆t

LΦδ,l

) ∥∥∥∥∥Φδ,l

(
sk,i−1

l −sk−1
l

∆t

)
− Φδ,l

(
sk

l −sk−1
l

∆t

)∥∥∥∥∥2

Ωl

.

Since Lp,l ≥ Lpc,l/θ, LT,l ≥ LT,l/2 and LΦ,l ≥ LΦδ,l/2 by assumption, the terms on the
righthand side can be neglected. Multiplication with φl(θ∆t)−1 finally leads to

φl

(
ei

pn,l − ei
pw,l,

ei
s,l

∆t

)
Ωl

+
φlmpc ,l

2∆t

∥∥∥ei−1
s,l

∥∥∥2
Ωl

≤ φl
θ∆t

(Lp,l

2 +
LT,l+LΦ,l

2∆t

) (∥∥∥ei−1
s,l

∥∥∥2
Ωl
−

∥∥∥ei
s,l

∥∥∥2
Ωl

)
. (4.9)

Combined error estimate. Summation of the estimates (4.7)–(4.9) yields∑
α∈{n,w}

θmλα,l

2

∥∥∥K1/2
l ∇ei

pα,l

∥∥∥2
Ωl

+ Cl(∆t)
∥∥∥ei−1

s,l

∥∥∥2
Ωl

≤ 1
4LΓ

∑
α∈{n,w}

(∥∥∥ei
gα,l

∥∥∥2
Γ
−

∥∥∥ei+1
gα,3−l

∥∥∥2
Γ

)
+

φl
θ∆t

(Lp,l

2 +
LT,l+LΦ,l

2∆t

) (∥∥∥ei−1
s,l

∥∥∥2
Ωl
−

∥∥∥ei
s,l

∥∥∥2
Ωl

)
,

where by assumption

Cl(∆t) =
φlmpc ,l

2∆t −
∑

α∈{n,w}

θL2
λα,l

M2
pα,l

2mλα,l
> 0.

By summing the estimates for l ∈ {1, 2} and i = 1, 2, . . . , r, one gets
r∑

i=1

2∑
l=1

∑
α∈{n,w}

θmλα,l

2

∥∥∥K1/2
l ∇ei

pα,l

∥∥∥2
Ωl

+

r∑
i=1

2∑
l=1

Cl(∆t)
∥∥∥ei−1

s,l

∥∥∥2
Ωl

≤ 1
4LΓ

2∑
l=1

∑
α∈{n,w}

∥∥∥e1
gα,l

∥∥∥2
Γ

+
φl
θ∆t

2∑
l=1

(Lp,l

2 +
LT,l+LΦ,l

2∆t

) ∥∥∥e0
s,l

∥∥∥2
Ωl
.
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Since the righthand side is independent of r, we conclude that the series on the left
are absolutely convergent. Therefore, sk,i

l → sk
l in L2(Ωl) and the Poincaré inequality

implies pk,i
α,l → pk

α,l inWl. To show the convergence of the gi
α,l, we consider again (4.2)

and (4.3), and take the limit i→ ∞. By continuity one obtains

lim
i→∞

(
ei

gα,l, ψα,l
)
Γ

= 0

for any ψα,l ∈ Wl. Since the trace operator is surjective onto H1/2
00 (Γ), which is dense in

L2(Γ), we conclude ei
gα,l

⇀ 0 in L2(Γ) as i → ∞. Additionally, one can directly obtain
ei

gα,l
+ ei−1

gα,3−l → 0 in L2(Γ) by (4.4). �

4.2. Existence and Convergence of the Solutions to the LDD-scheme II

The existence of a unique solution to Problem 4 is again a consequence of the
linearization, but using additionally the contraction property in (3.19).

Lemma 4.2. Problem 4 has a unique solution if Assumption 1 is fulfilled, θ ∈ (0, 1],
and it holds ∆tθLΨ,lLpc,l < 1.

Proof. Since pk,i−1
α,l |Γ ∈ L2(Γ), (3.9) uniquely provides gi

α,l ∈ L2(Γ) for α ∈ n,w and
l ∈ {1, 2}. After multiplying (3.19) by ∆t and adding sk−1

l , the lefthand side is sk,i
l , while

the righthand side, considered as function

Fl(sk,i
l ) := sk−1

l + ∆tθΨl

(
pk,i−1

n,l − pk,i−1
w,l − pc,l(sk,i

l )
)

+ ∆t(1 − θ)Ψk−1
l (4.10)

maps L2(Ωl) into itself. Moreover, for s, r ∈ L2(Ωl), it holds∥∥∥Fl(s) − Fl(r)
∥∥∥

Ωl
≤ ∆tθLΨ,lLpc,l

∥∥∥s − r
∥∥∥

Ωl
.

By assumption ∆tθLΨ,lLpc,l < 1, so Fl is a contraction, and the Banach fixed-point
theorem yields the existence of a unique solution sk,i

l ∈ L2(Ωl) to (3.19). Reordering of
the sum of (3.16) and (3.17) leads to

Lp,l

(
pk,i

n,l − pk,i
w,l, ψn,l − ψw,l

)
Ωl

+ θ
∑

α∈{n,w}

(
λα,l(sk,i

l )Kl∇pk,i
α,l, ∇ψα,l

)
Ωl

+
∑

α∈{n,w}

(
LΓ pk,i

α,l, ψα,l
)
Γ

=
∑

α∈{n,w}

(
f i
α,l, ψα,l

)
Ωl
−

∑
α∈{n,w}

(
gi
α,l, ψα,l

)
Γ
,

where both f i
α,l ∈ L2(Ωl) are independent of pk,i

n,l and pk,i
w,l. By the Lax-Milgram lemma,

a unique solution (pk,i
n,l, pk,i

w,l) ∈ [Wl]2 exists for l ∈ {1, 2}. �

To prove the convergence of the LDD-scheme II, we derive a-priory estimates for
the errors between the solution to Problem 4 and the solution of the limit equations.
These estimates then yield the convergence for any initial guess.
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Theorem 4.2 (Convergence of the LDD-scheme II). Let Assumption 1 be fulfilled, and
let θ ∈ (0, 1] and τl > 0 be fixed. Assume, that a solution (sk, pk

n, pk
w) ∈ V of Problem 2

satisfying
∥∥∥K1/2

l ∇pk
α,l

∥∥∥
L∞(Ωl)

≤ Mpα,l and uk,θ
α,l · νl ∈ L2(Γ) exists. If the stabilization

parameter is sufficiently large and the time step is small enough, i.e.

Lp,l > 2φlθLΨ,l, ∆t ≤ 1
2θLΨ,lLpc ,l

and ∆t ≤
√√√√√√√√ 1

2θφlLΨ,l
− 1
Lp,l∑

α∈{n,w}

( 2θL2
Ψ,lL

2
pc ,l

C2
Ωl

mλα,lKl
+

θL2
λα,l

M2
pα,l

φ2
l mλα,l

)
for l ∈ {1, 2}, the sequence of solutions of Problem 4 converges towards the solution of
Problem 2 independently of the initial guess (sk,0, pk,0

n , pk,0
w ) ∈ W and g0

α,l ∈ L2(Γ) for
l ∈ {1, 2} and α ∈ {n,w}. More precisely, it holds

sk,i
l → sk

l in L2(Ωl), pk,i
α,l → pk

α,l in Wl, gi
α,l ⇀ gα,l in L2(Γ)

for l ∈ {1, 2}, α ∈ {n,w} as i→ ∞.

Remark 4.3. The assumptions on the solution of Problem 2 seem rather restrictive, but
as mentioned in Remark 2.5, the solution is expected to fulfill sk

l ∈ C0(Ωl) and pk
α,l ∈

C1(Ωl). Then, one would have λα,l(sk
l )∇pk

α,l ∈ C0(Ωl) and hence these assumptions
would be always fulfilled.

Proof (Theorem 4.2). We definer the iteration errors by

ei
s,l := sk,i

l − sk
l ∈ L2(Ωl), ei

pα,l := pk,i
α,l − pk

α,l ∈ Wl, ei
gα,l := gi

α,l − gα,l ∈ L2(Γ),

ei
pc,l := ei

pn,l − ei
pw,l ∈ Wl, ei

Ψ,l := Ψ
k,i
l − Ψl(pk

n,l − pk
w,l − pc,l(sk,i

l )) ∈ L2(Γ).

Subtracting the limit equations (3.5) and (3.10)–(3.12) from (3.16)–(3.19) gives

−φl

(
ei

s,l

∆t , ψn,l

)
Ωl

+Lp,l

(
ei

pc,l − ei−1
pc,l, ψn,l

)
Ωl
−

(
uk,θ,i

n,l − uk,θ
n,l , ∇ψn,l

)
Ωl

+
(
LΓei

pn,l + ei
gn,l, ψn,l

)
Γ

= 0, (4.11)

φl

(
ei

s,l

∆t , ψw,l

)
Ωl

− Lp,l

(
ei

pc,l − ei−1
pc,l, ψw,l

)
Ωl
−

(
uk,θ,i

w,l − uk,θ
w,l, ∇ψw,l

)
Ωl

+
(
LΓei

pw,l + ei
gw,l, ψw,l

)
Γ

= 0, (4.12)

ei
gα,l = −2LΓei−1

pα,3−l − ei−1
gα,3−l in L2(Γ), (4.13)

ei
s,l

∆t = θ
(
Ψ

k,i
l − Ψk

l
)

in L2(Ωl). (4.14)

Error estimate on the saturation. Equation (4.14) yields
1
∆t

∥∥∥ei
s,l

∥∥∥
Ωl

= θ
∥∥∥Ψk,i

l − Ψk
l

∥∥∥
Ωl

≤ θ
∥∥∥Ψk,i

l − Ψl(pk
n,l − pk

w,l − pc,l(sk,i
l ))

∥∥∥
Ωl

+ θ
∥∥∥Ψl(pk

n,l − pk
w,l − pc,l(sk,i

l )) − Ψk
l

∥∥∥
Ωl

≤ θ
∥∥∥ei

Ψ,l

∥∥∥
Ωl

+ θLΨ,lLpc,l

∥∥∥ei
sl

∥∥∥
.

In the last step, the Lipschitz continuity of Ψl and pc,l was used. Multiplying by ∆t and
using ∆t ≤ (2θLΨ,lLpc,l)

−1 yields∥∥∥ei
s,l

∥∥∥
Ωl
≤ 2θ∆t

∥∥∥ei
Ψ,l

∥∥∥
Ωl
. (4.15)
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Error estimate on the non-wetting pressure. Note that (4.13) again leads to (4.6).
Therefore, testing (4.11) with ψn,l = ei

pn,l
yields

−φl

(
ei

s,l

∆t , ei
pn,l

)
Ωl

+Lp,l

(
ei

pc,l − ei−1
pc,l, ei

pn,l

)
Ωl

+ θ
(
λn,l(sk,i

l )Kl∇ei
pn,l, ∇ei

pn,l

)
Ωl

= −θ
((
λn,l(sk,i

l ) − λn,l(sk
l )
)
Kl∇pk

n,l, ∇ei
pn,l

)
Ωl

+ 1
4LΓ

(∥∥∥ei+1
gn,l

∥∥∥2
Γ
−

∥∥∥ei
gn,3−l

∥∥∥2
Γ

)
.

By the lower bound mλn,l on λn,l, the Lipschitz continuity of λn,l and the bound on the
pressure gradient, one obtains with the Cauchy-Schwarz inequality

−φl

(
ei

s,l

∆t , ei
pn,l

)
Ωl

+Lp,l

(
ei

pc,l − ei−1
pc,l, ei

pn,l

)
Ωl

+ θmλn,l

∥∥∥K1/2
l ∇ei

pn,l

∥∥∥2
Ωl

≤ θLλn,lMpn,l

∥∥∥ei
s,l

∥∥∥
Ωl

∥∥∥K1/2∇ei
pn,l

∥∥∥
Ωl

+ 1
4LΓ

(∥∥∥ei+1
gn,l

∥∥∥2
Γ
−

∥∥∥ei
gn,3−l

∥∥∥2
Γ

)
.

Young’s inequality and estimate (4.15) lead to

−φl

(
ei

s,l

∆t , ei
pn,l

)
Ωl

+Lp,l

(
ei

pc,l − ei−1
pc,l, ei

pn,l

)
Ωl

+
θmλn ,l

2

∥∥∥K1/2
l ∇ei

pn,l

∥∥∥2
Ωl

≤ 2∆t2θ3L2
λn ,l

M2
pn ,l

mλn ,l

∥∥∥ei
Ψ,l

∥∥∥2
Ωl

+ 1
4LΓ

(∥∥∥ei+1
gn,l

∥∥∥2
Γ
−

∥∥∥ei
gn,3−l

∥∥∥2
Γ

)
. (4.16)

Error estimate on the wetting pressure. Testing (4.3) with ψw,l = ei
pw,l

and following
the same steps as for the non-wetting pressure equation yields

φl

(
ei

s,l

∆t , ei
pw,l

)
Ωl

− Lp,l

(
ei

pc,l − ei−1
pc,l, ei

pw,l

)
Ωl

+
θmλw ,l

2

∥∥∥K1/2
l ∇ei

pw,l

∥∥∥2
Ωl

≤ 2∆t2θ3L2
λw ,l

M2
pw ,l

mλw ,l

∥∥∥ei
Ψ,l

∥∥∥2
Ωl

+ 1
4LΓ

(∥∥∥ei
gw,l

∥∥∥2
Γ
−

∥∥∥ei+1
gw,3−l

∥∥∥2
Γ

)
. (4.17)

Combined error estimate. Addition of the pressure estimates (4.16) and (4.17) yields
by the identity (a − b)a = 1

2 (a2 − b2 + (a − b)2)

−φl

(
ei

s,l

∆t , ei
pc,l

)
Ωl

+
Lp,l

2

(∥∥∥ei
pc,l

∥∥∥2
Ωl
−

∥∥∥ei−1
pc,l

∥∥∥2
Ωl

+
∥∥∥ei

pc,l − ei−1
pc,l

∥∥∥2
Ωl

)
+

∑
α∈{n,w}

θmλα,l

2

∥∥∥K1/2
l ∇ei

pα,l

∥∥∥2
Ωl

≤ 1
4LΓ

∑
α∈{n,w}

(∥∥∥ei
gα,l

∥∥∥2
Γ
−

∥∥∥ei+1
gα,3−l

∥∥∥2
Γ

)
+

∑
α∈{n,w}

2∆t2θ3L2
λα,l

M2
pα,l

mλα,l

∥∥∥ei
Ψ,l

∥∥∥2
Ωl
. (4.18)

The first term on the lefthand side can be estimated as follows. Using (4.14) and Ψ∗ :=
Ψl(pk

n,l − pk
w,l − pc,l(sk,i

l )), one obtains(
ei

s,l

∆t , ei
pc,l

)
Ωl

=

(
ei

s,l

∆t , ei
pc,l − ei−1

pc,l

)
Ωl

+ θ
(
Ψ

k,i
l − Ψ∗ + Ψ∗ − Ψk

l , ei−1
pc,l

)
Ωl

≤ 1
∆t

∥∥∥ei
s,l

∥∥∥
Ωl

∥∥∥ei
pc,l − ei−1

pc,l

∥∥∥
Ωl

+ θ
(
ei

Ψ,l, ei−1
pc,l

)
Ωl

+ θ
(
Ψl

(
pk

n,l − pk
w,l − pc,l(sk,i

l )
)
− Ψl

(
pk

n,l − pk
w,l − pc,l(sk

l )
)
, ei−1

pc,l

)
Ωl
.
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Since Ψl, pc,l are decreasing and Lipschitz-continuous, one gets(
ei

s,l

∆t , ei
pc,l

)
Ωl

≤ 1
∆t

∥∥∥ei
s,l

∥∥∥
Ωl

∥∥∥ei
pc,l − ei−1

pc,l

∥∥∥
Ωl
− θ

LΨ,l

∥∥∥ei
Ψ,l

∥∥∥2
Ωl

+ θLΨ,lLpc,l

∥∥∥ei
sl

∥∥∥
Ωl

∑
α∈{n,w}

∥∥∥ei−1
pα,l

∥∥∥
Ωl
.

With the estimate (4.15), Young’s inequality yields for εα > 0(
ei

s,l

∆t , ei
pc,l

)
Ωl

≤
(

2φlθ
2

Lp,l
+

∑
α∈{n,w}

∆t2θ4L2
Ψ,lL

2
pc ,l

εα
− θ

LΨ,l

)∥∥∥ei
Ψ,l

∥∥∥2
Ωl

+
Lp,l

2φl

∥∥∥ei
pc,l − ei−1

pc,l

∥∥∥2
Ωl

+
∑

α∈{n,w}
εα

∥∥∥ei−1
pα,l

∥∥∥2
Ωl
.

The Poincaré inequality (with CΩl the domain dependent constant) leads to(
ei

s,l

∆t , ei
pc,l

)
Ωl

≤
(

2φlθ
2

Lp,l
+

∑
α∈{n,w}

∆t2θ4L2
Ψ,lL

2
pc ,l

εα
− θ

LΨ,l

)∥∥∥ei
Ψ,l

∥∥∥2
Ωl

+
Lp,l

2φl

∥∥∥ei
pc,l − ei−1

pc,l

∥∥∥2
Ωl

+
∑

α∈{n,w}

εαC2
Ωl

Kl

∥∥∥K1/2
l ∇ei−1

pα,l

∥∥∥2
Ωl
.

Multiplying this estimate by φl, choosing εα = θmλα,lKl(4φlC2
Ωl

)−1, and adding to
(4.18), one is left with

Lp,l

2

(∥∥∥ei
pc,l

∥∥∥2
Ωl
−

∥∥∥ei−1
pc,l

∥∥∥2
Ωl

)
+

∑
α∈{n,w}

θmλα,l

2

∥∥∥K1/2
l ∇ei

pα,l

∥∥∥2
Ωl

+ Cl(∆t)
∥∥∥ei

Ψ,l

∥∥∥2
Ωl

≤ 1
4LΓ

∑
α∈{n,w}

(∥∥∥ei
gα,l

∥∥∥2
Γ
−

∥∥∥ei+1
gα,3−l

∥∥∥2
Γ

)
+

∑
α∈{n,w}

θmλα,l

4

∥∥∥K1/2
l ∇ei−1

pα,l

∥∥∥2
Ωl
,

where

Cl(∆t) =
φlθ
LΨ,l
− 2φ2

l θ
2

Lp,l
− ∆t2

∑
α∈{n,w}

(
4φ2

l θ
3L2

Ψ,lL
2
pc ,l

C2
Ωl

mλα,lKl
+

2θ3L2
λα,l

M2
pα,l

mλα,l

)
.

By assumption, Lp,l > 2φlθLΨ,l and ∆t is small enough, such that Cl(∆t) ≥ 0. Then,
summation of the estimates for l ∈ {1, 2} and i = 1, 2, . . . , r yields

r∑
i=1

2∑
l=1

∑
α∈{n,w}

θmλα,l

4

∥∥∥K1/2
l ∇ei

pα,l

∥∥∥2
Ωl

+

r∑
i=1

2∑
l=1

Cl(∆t)
∥∥∥ei

Ψ,l

∥∥∥2
Ωl

≤ 1
4LΓ

2∑
l=1

∑
α∈{n,w}

∥∥∥e1
gα,l

∥∥∥2
Γ

+

2∑
l=1

Lp,l

2

∥∥∥e0
pc,l

∥∥∥2
Ωl

+

2∑
l=1

∑
α∈{n,w}

θmλα,l

4

∥∥∥K1/2
l ∇e0

pα,l

∥∥∥2
Ωl
.

Since the righthand side is independent of r, we conclude that the series on the left is
absolutely convergent. By the Poincaré inequality and estimate (4.15), we conclude
pk,i
α,l → pk

α,l inWl and sk,i
l → sk

l in L2(Ωl). The weak convergence ei
gα,l

⇀ 0 in L2(Γ)
can be shown exactly as in Theorem 4.1 by the limit i→ ∞ in (4.11) and (4.12). �
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5. Numerical Experiments

For the numerical validation of the theoretical results above, we present several nu-
merical studies in two spatial dimensions. We focus on three aspects: the convergence
behavior in space and time of the whole method, the convergence behavior of the LDD-
schemes within single time steps, and the choice of the parameters. Three examples
with manufactured solution are presented, followed by a realistic application.

The theoretical results above are independent of the spatial discretization. For
Richards’ equation and two-phase flow models with equilibrium capillary pressure as
well as dynamic capillarity, the (mixed) finite element method was used in [2–4], the
discontinuous Galerkin method in [5, 61] and the finite volume method in [6, 62–64].
General gradient schemes were considered in [59, 65]. Since the pressure equations are
elliptic, we choose here a standard finite element method (Q2) on a uniform, rectangu-
lar mesh of width ∆x matching at the interface Γ. We use the Crank-Nicolson method
(θ = 1/2) in time, so that errors of order O(∆t2 + ∆x2) are expected for sufficiently
smooth solutions. At each time step, the LDD-schemes are stopped, when the rela-
tive L2-norm of the difference of subsequent iterative solutions drops below 10−8. To
obtain the implicitly given saturation in the LDD-scheme II, the fixed-point iteration
discussed in the proof of Lemma 4.2 is used up to a residual of 10−12. For simplicity,
we take the same linearization parameters on both subdomains, i.e. La := La,1 = La,2
for a ∈ {p,T,Φ}.

The implementation was done in C++ using the library deal.II [66]. All calcula-
tions were performed on a Linux octa-core system.

5.1. Analytic Test Cases

For the three examples with manufactured solution, one can explicitly compute
the errors and thereby the experimental order of convergence (EOC). For simplicity,
we assume an isotropic and constant absolute permeability on the whole domain, i.e.
K1 = K2 = 1, and a constant porosity φ1 = φ2 = 1. We set the final time T = 1,
and decomposed the domain Ω = (−1, 1) × (0, 1) at the interface Γ = {0} × (0, 1) into
Ω1 = (−1, 0) × (0, 1) and Ω2 = (0, 1) × (0, 1).

5.1.1. Linear Coefficient Functions Without Hysteresis
We consider a simple nonlinear problem with linear coefficient functions, but no

hysteresis. These functions are therefore chosen

λn(s) = 1 − s, λw(s) = s, pc(s) = 0.2 − s, τ ≡ 1, γ ≡ 0.

The righthand side terms are selected such that the analytic solution is given by

pn(x, t) =
(1−x1)(1+x1)2

2(1+t)2 , pw(x, t) =
(1−x1)(1+x1)2

2(1+t) , s(x, t) =
(1−x1)(1+x1)2

2(1+t) + 0.2.

This corresponds to homogeneous Dirichlet boundary conditions at x1 = ±1, homoge-
neous Neumann boundary conditions at x2 ∈ {0, 1}. Note that in this special case, the
two schemes almost coincide, since they only differ in the inverted capillary pressure
equation, which is a linear transformation here, and thus the results are very similar.
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Figure 2: Second order convergence in time step size ∆t and mesh width ∆x of pressure and saturation is
observed for both LDD-schemes in the case with linear coefficients, but no hysteresis.

∆t ∆x ‖ep‖L2(0,T ;H1(Ω)) EOCp ‖es‖L2(0,T ;H1(Ω)) EOCs Avg.-Iter.

0.2 0.2 5.352 · 10−3 5.824 · 10−3 13
0.1 0.1 1.394 · 10−3 1.94 1.463 · 10−3 1.993 12.3
0.05 0.05 3.564 · 10−4 1.968 3.670 · 10−4 1.995 12
0.025 0.025 9.013 · 10−5 1.983 9.192 · 10−5 1.997 11.5
0.0125 0.0125 2.273 · 10−5 1.987 2.312 · 10−5 1.991 15.5

Table 1: Convergence study and average number of LDD-iterations per time step of the LDD-scheme I for
varying time step size ∆t and mesh width ∆x in the case with linear coefficients, but no hysteresis.

∆t ∆x ‖ep‖L2(0,T ;H1(Ω)) EOCp ‖es‖L2(0,T ;H1(Ω)) EOCs Avg.-Iter.

0.2 0.2 5.352 · 10−3 5.824 · 10−3 13
0.1 0.1 1.394 · 10−3 1.94 1.463 · 10−3 1.993 12
0.05 0.05 3.564 · 10−4 1.968 3.670 · 10−4 1.995 12
0.025 0.025 9.013 · 10−5 1.983 9.192 · 10−5 1.997 11.3
0.0125 0.0125 2.273 · 10−5 1.987 2.312 · 10−5 1.991 16.2

Table 2: Convergence study and average number of LDD-iterations per time step of the LDD-scheme II for
varying time step size ∆t and mesh width ∆x in the case with linear coefficients, but no hysteresis.
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Figure 3: The LDD-schemes converge very fast and linearly in the last time step of the case with linear
coefficient functions, but no hysteresis. Plotted are the relative differences of pressure and saturation between
consecutive iterations, together with the fitted convergence rates.

First, we study the convergence order of the two methods with respect to the time
step size ∆t and the mesh width ∆x. For the LDD-scheme I, the parameters are Lp =

0.5, LT = 1 and LΓ = 0.375 (LΦ = 0), while for the LDD-scheme II, the parameters
are Lp = 0.5 and LΓ = 0.375. Second order convergence of pressure and saturation is
observed for both schemes, as clearly shown in Tables 1 and 2 and Fig. 2. This even
holds for the saturation in the L2(0,T ; H1(Ω)) norm, which is not covered by the above
theoretical results.

With decreasing time step size ∆t, the average iteration number per time step and
thus the convergence rate stay almost constant. This result is surprising, since the
convergence rate asymptotically deteriorates for both, the L-scheme and the domain
decomposition method. For L-schemes, the converge rate typically is

√
C/(C + ∆t) for

some C > 0 (see e.g. [2, 4]), and for the domain decomposition method with optimal
parameter, one obtains convergence rates of 1 − O(

√
∆t) (see e.g. [14, 16]). Here,

the pre-asymptotic regime leads to the different behavior, which seems to end around
∆t = 0.025.

Moreover, the analysis provides convergence independently of the initial guess.
This could also be observed, when the initial guess in each time step was fixed to
pk,0

n = pk,0
w ≡ 1 and sk,0 ≡ 0.75 for the above simulations with ∆t = ∆x = 0.05. In

this case, the resulting errors ‖ep‖L2(0,T ;H1(Ω)) and ‖es‖L2(0,T ;H1(Ω)) were the same as in
the studies above (±0.1%), only the average number of LDD-iterations per time step
increased by about 20%.

Next, the convergence properties within one time step are considered. Therefore,
the relative differences in pressure and saturation between consecutive iterations

di
p :=

√∥∥∥∥ pk,i
n −pk,i−1

n

pk,i
n

∥∥∥∥2

L2(Ω)
+

∥∥∥∥ pk,i
w −pk,i−1

w

pk,i
w

∥∥∥∥2

L2(Ω)
, di

s :=
∥∥∥∥ sk,i−sk,i−1

sk,i

∥∥∥∥
L2(Ω)

,

are plotted in Fig. 3 for the last time step of the above simulations with ∆t = ∆x = 0.05.
These results indicate a very fast, linear convergence. This fast convergence depends on
a proper choice of the parameters. The average number of LDD-iterations per time step
is minimal for a specific set of parameters and increases drastically for small deviations
from that (see Fig. 4). The linearization parameters typically should be chosen as
small as possible, but big enough to ensure convergence (see e.g. [2, 4, 22]). Here,
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that means that lower bounds from our analysis (see Theorems 4.1 and 4.2) should
be good predictions. They are Lp ≥ 1/2 and LT ≥ 1/2 for the first scheme and
Lp > 1 for the second one, and are indeed very close to the optimal ones. On the
other hand, theoretical prediction of the domain decomposition parameterLΓ is usually
based on the Fourier transformation [14, 16, 18], which cannot be directly applied to
nonlinear problems. Therefore, there are no such predictions available yet for this type
of nonlinear equations.
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Figure 4: Parameter dependence of the average number of LDD-iterations per time step for ∆t = ∆x = 0.05
in the case with linear coefficients, but no hysteresis. For simplicity, Lp = 0 for LDD-scheme I.

5.1.2. Nonlinear Coefficient Functions Without Hysteresis
Next, we consider a problem with nonlinear coefficient functions, again excluding

hysteresis. These functions are

λn(s) = (1 − s)2, λw(s) = s2, pc(s) = −s2, τ(s) = s, γ ≡ 0.

The righthand sides are chosen in such a way that the analytic solution is given by

pn(x, t) = 1 − (3−2t)(3+2(x2−x1))2

400 , pw(x, t) = 1 +
(3−2t)(3+2(x2−x1))2

400 ,

s(x, t) =
(3+2(x2−x1))

√
1+t

10 ,

where the corresponding boundary conditions are for simplicity the given exact val-
ues, i.e. inhomogeneous Dirichlet values on the whole boundary ∂Ω. Note, that the
solutions are polynomials of degree two, and thus the spatial discretization (Q2) is ex-
act, so that the mesh width ∆x = 0.05 is fixed in the following. The parameters were
Lp = 0.5, LT = 0.55 and LΓ = 2.65 (LΦ = 0) for the LDD-scheme I, while Lp = 1.5
and LΓ = 2.65 for the LDD-scheme II.

As before, second order convergence in ∆t is achieved by both schemes, again
even for the saturation in the L2(0,T ; H1(Ω)) norm (see Fig. 5 and Tables 3 and 4).
The average number of LDD-iterations per time step is two times bigger than in the
previous example due to the stronger nonlinearities. This time, it even decreases for
decreasing time step size ∆t, which indicates here an early pre-asymptotic regime,
where the smaller differences between solutions of consecutive time steps lead to a
smaller number of necessary iterations. Fixing the initial guess (s ≡ 0.25 and pn =
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Figure 5: Second order convergence in the time step size ∆t of pressure and saturation is observed for both
LDD-schemes in the case with nonlinear coefficients, but no hysteresis.

∆t ‖ep‖L2(0,T ;H1(Ω)) EOCp ‖es‖L2(0,T ;H1(Ω)) EOCs Avg.-Iter.

0.2 1.363 · 10−3 3.712 · 10−4 51.8
0.1 2.573 · 10−4 2.405 8.829 · 10−5 2.072 46.6
0.05 6.370 · 10−5 2.014 2.174 · 10−5 2.022 43.2
0.025 1.584 · 10−5 2.007 5.519 · 10−6 1.978 41.6
0.0125 4.126 · 10−6 1.941 1.665 · 10−6 1.729 41.1

Table 3: Convergence study and average number of LDD-iterations per time step of the LDD-scheme I for
varying time step size ∆t in the case with nonlinear coefficients, but no hysteresis.

∆t ‖ep‖L2(0,T ;H1(Ω)) EOCp ‖es‖L2(0,T ;H1(Ω)) EOCs Avg.-Iter.

0.2 6.017 · 10−4 3.036 · 10−4 49.6
0.1 1.345 · 10−4 2.162 7.200 · 10−5 2.076 44.5
0.05 3.181 · 10−5 2.08 1.750 · 10−5 2.04 40.1
0.025 7.733 · 10−6 2.04 4.305 · 10−6 2.023 36.6
0.0125 2.020 · 10−6 1.937 1.076 · 10−6 2 33.6

Table 4: Convergence study and average number of LDD-iterations per time step of the LDD-scheme II for
varying time step size ∆t in the case with nonlinear coefficients, but no hysteresis.

pw ≡ 2) resulted in the same errors ‖ep‖L2(0,T ;H1(Ω)) and ‖es‖L2(0,T ;H1(Ω)) (±0.3%) as in
the above studies with ∆t = 0.05, but a significantly increased number of iterations per
time step (71% and 89% for LDD-scheme I and II, respectively).

Next, the convergence properties of the methods within one time step are discussed.
In the last time step of the above simulations with ∆t = 0.05, we observed again a fast
and almost linear convergence (see Fig. 6). The parameter dependence of the average
number of iterations per time step shows a different behavior in this case (see Fig. 7).
Only the second scheme has an optimal parameter set, whereas the first one shows
improving convergence for decreasing LT → 0.6 until it suddenly does not converge
any more. The latter agrees very well with the theory, which predicts Lp ≥ 1 and
LT ≥ 1/2 for the LDD-scheme I, while Lp > 1 for the second one is again very close
to the optimum at 1.5. Furthermore, small deviations from the optima have less impact
than in the previous example.
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Figure 6: The LDD-schemes converge fast and almost linearly in the last time step of the case with nonlinear
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consecutive iterations, together with the fitted convergence rates.
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Figure 8: Second order convergence in time step size ∆t and mesh width ∆x of pressure and saturation is
observed for both LDD-schemes in the case with linear coefficients, including hysteresis. The mesh width is
∆x = ∆t/2 for LDD-scheme I and ∆x = ∆t/4 for LDD-scheme II.

5.1.3. Linear Coefficient Functions Including Hysteresis
Finally, we consider a problem including hysteresis, where the linear coefficient

functions are

λn(s) = 1 − s, λw(s) = s, pc(s) = −s, τ ≡ 1, γ ≡ 1.

Since hysteresis occurs during the change between imbibition and drainage, we con-
structed righthand side terms which yield the following manufactured solution

s(x, t) =


1
2 cos

(
(t0(x) − t)2

)
if t < t0(x),

1
2 if t0(x) ≤ t ≤ t1(x),
1
2 cos

(
(t − t1(x))2

)
if t1(x) < t,

pn(x, t) =


1 − 1

2 cos
(
(t0(x) − t)2

)
if t < t0(x),

6ξ5(t, x) − 15ξ4(t, x) + 10ξ3(t, x) + 1
2 if t0(x) ≤ t ≤ t1(x),

2 − 1
2 cos((t − t1(x))2) if t1(x) < t,

pw(x, t) =


2 +

√
(t0(x) − t)2 sin

(
(t0(x) − t)2

)
if t < t0(x),

−6ξ5(t, x) + 15ξ4(t, x) − 10ξ3(t, x) + 2 if t0(x) ≤ t ≤ t1(x),
1 −

√
(t − t1(x))2 sin((t − t1(x))2) if t1(x) < t,

where

t0(x) := 10x1+7
20 , t1(x) := t0(x) + 3

10 = 10x1+13
20 , ξ(t, x) := t−t0(x)

t1(x)−t0(x) .

The corresponding boundary conditions are simply chosen to be of inhomogeneous
Dirichlet type at x1 = ±1, and of homogeneous Neumann type at x2 ∈ {0, 1}. For
the LDD-scheme I, the regularization parameter is chosen δ = 5 · 10−4 and the LDD
parameters are Lp = 0.5, LT = 2, LΦ = 103 and LΓ = 0.375. In this case, we used a
reduced stopping criterion for the LDD-scheme of 10−7. For the LDD-scheme II, the
parameters are Lp = 0.33 and LΓ = 0.375.

As before, second order convergence with respect to the time step size ∆t and mesh
width ∆x is observed for both schemes, until the errors due to regularization are domi-
nating in the first scheme (see Tables 5 and 6 and Fig. 8). Here, the inverted formulation
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∆t ∆x ‖ep‖L2(0,T ;H1(Ω)) EOCp ‖es‖L2(0,T ;H1(Ω)) EOCs Avg.-Iter.

0.5 0.25 0.161 7.739 · 10−2 5,525
0.2 0.1 4.600 · 10−2 1.364 6.891 · 10−3 2.64 4,890
0.1 0.05 1.196 · 10−2 1.943 1.688 · 10−3 2.029 4,380
0.05 0.025 3.215 · 10−3 1.895 2.336 · 10−3 −0.469 3,900

Table 5: Convergence study and average number of LDD-iterations per time step of the LDD-scheme I for
varying time step in the full analytical case with linear coefficients including hysteresis.

∆t ∆x ‖ep‖L2(0,T ;H1(Ω)) EOCp ‖es‖L2(0,T ;H1(Ω)) EOCs Avg.-Iter.

0.2 0.05 1.534 · 10−2 5.631 · 10−3 17.8
0.1 0.025 3.788 · 10−3 2.018 1.309 · 10−3 2.105 17
0.05 0.0125 9.454 · 10−4 2.002 3.147 · 10−4 2.056 16.5
0.025 0.0063 2.345 · 10−4 2.011 7.640 · 10−5 2.042 15.6

Table 6: Convergence study and average number of LDD-iterations per time step of the LDD-scheme II for
varying time step in the full analytical case with linear coefficients including hysteresis.

of the second scheme is clearly advantageous. While the first scheme needs a huge pa-
rameter LΦ for a moderate regularization parameter δ due to the steep slope in the
capillary pressure equation near zero, the second scheme has no such restriction due to
the inverted formulation. Therefore, the average number of iterations per time step for
the LDD-scheme I is huge, which makes this scheme unpractical for such problems.
In contrast, the average number of iteration for the LDD-scheme II is very low, which
again shows that the latter is the preferable method for this type of applications. As
before, we observe the iteration number to decrease for decreasing time step size due
to the pre-asymptotic regime. Furthermore, if the initial guess is fixed to sk,0 ≡ 0.75
and pk,0

n = pk,0
w ≡ 1 in each time step, the errors are similar to those in the original

studies with ∆t = 0.1, (+35% for LDD-scheme I, ±0.1% for LDD-scheme II).
The convergence is almost linear for both schemes, but only the LDD-scheme II is

fast (see Fig. 9). The first scheme has a convergence rate of 0.999 and thus should not
be used for applications including hysteresis, or at least needs to be improved by e.g.
localizing the LDD parameter. Nevertheless, it has good convergence properties within

0 2,000 4,000

10−7

10−4

10−1

Iteration i

Relative difference

di
p for LDD-scheme I

di
s for LDD-scheme I

Convergence rate 0.999

0 5 10 15

10−9

10−5

10−1

Iteration i

Relative difference
di

p for LDD-scheme II

di
s for LDD-scheme II

Convergence rate 0.364

Figure 9: Both LDD-schemes converge almost linearly, but only the second one is fast in the last time step
of the case with linear coefficient functions including hysteresis, for ∆t = 0.05 and ∆x = 0.025 (left) or
∆x = 0.0125 (right). Plotted are the relative differences of pressure and saturation between consecutive
iterations, together with the fitted convergence rates.
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the first few iterations, and hence could be used as a preconditioner. The parameter
dependence of the average number of iterations per time step is similar to the previous
example. Only the LDD-scheme II has a clear optimal parameter set, whereas the
first one shows almost no dependence on the domain decomposition parameter LΓ (see
Fig. 10). The lower bounds from our analysis are in this case Lp ≥ 1/2, LT ≥ 1/2 and
LΦ ≥ 103 for LDD-scheme I and Lp > 1 for the second one. For the first scheme, this
coincides very well with the observed optimum, while the bound for the second one is
too restrictive for this application, but a good indicator of the optimal region.
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Figure 10: Parameter dependence of the average number of iterations per time step in the analytical case with
linear coefficients including hysteresis. Left: δ = 5 · 10−4, ∆t = 0.1, ∆x = 0.05. For simplicity Lp = LT = 0.
Right: δ = 10−9, ∆t = 0.1, ∆x = 0.025.

5.2. Realistic Test Case

This last subsection is dedicated to the study of a realistic problem including grav-
ity. To this end, we choose a van-Genuchten-Mualem parameterization [67], with the
relative permeabilities and the equilibrium capillary pressure given by

kn(s) :=
√

1 − seff

(
1 − s1/m

eff

)2m
, kw(s) :=

√
seff

(
1 −

(
1 − s1/m

eff

)m)2
,

p̃c(s, x) := P
(
s−1/m

eff
− 1

)1−m − (ρn − ρw)gx1, seff := s−swr
1−swr−snr

,

where the effective saturation seff accounts for the residual saturations snr and swr. The
capillary pressure is scaled by a material-specific pressure P, and the retention ex-
ponent m determines the steepness of the S-shaped curve. Furthermore, we include
dynamic capillarity and hysteresis by constant τ and γ within each subdomain. All the
parameters are listed in Table 7 and inspired by the choices made in [68].

To obtain the non-dimensional equations (2.1)–(2.6), we chose the scaling param-
eters L = 1 m, p∗ = 2.5 · 103 Pa and τ∗ = 1.5 · 103 Pa s and

λα(s) = τ∗
µα

kα(s), K = K̃
L2 , pc(s) =

p̃c(s)
p∗ , τ = τ̃

τ∗ , γ =
γ̃
p∗ .

The domain Ω = (−0.5, 0.5)×(0, 1) is decomposed into two subdomains at the interface
Γ = {0}× (0, 1). We chose the final time T = 400 (real time 240 s) and initial conditions
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Parameter Symbol
Value

Unit
Ω1 Ω2

Porosity φ 0.4 0.3 m2

Absolute permeability K̃ 3.0 · 10−10 5.0 · 10−10 m2

Material-specific pressure P 1.25 · 103 1.0 · 103 Pa
Retention exponent m 0.8 0.7 —
Residual saturation, non-wetting phase snr 0.1 0.05 —
Residual saturation, wetting phase swr 0.1 0.05 —
Typical redistribution parameter τ̃ 2.0 · 103 1.5 · 103 Pa s
Hysteresis pressure parameter γ̃ 200 100 Pa
Density of the non-wetting phase ρn 1.0 kg/m3

Density of the wetting phase ρw 1.0 · 103 kg/m3

Gravity (positive x-direction) g 9.81 m/s2

Viscosity of the non-wetting phase µn 2.0 · 10−5 Pa s
Viscosity of the wetting phase µw 1.0 · 10−3 Pa s

Table 7: Parameters of the van-Genuchten-Mualem model in the two subdomains for the realistic case.

with almost constant saturation given by

p0
n(x) = 0.75 − ρngL

p∗ x1 = 0.75 − 0.003924x1, p0
w(x) = − ρwgL

p∗ x1 = −3.924x1,

s0(x) = p−1
c

(
p0

n(x) − p0
w(x)

)
≈

0.2431 if x1 < 0,
0.2414 if x1 > 0.

The boundary conditions at x1 = ±0.5 are of constant Dirichlet type, to mach the initial
conditions, except for pw at x1 = −0.5 given by

pw

∣∣∣
x1=−0.5 = 1.962 +


0.015t if t < 25,
0.375 if 25 ≤ t < 100,
0.015 · (125 − t) if 100 ≤ t < 130,
−0.075 if 125 ≤ t,

whereas the boundary conditions at x2 ∈ {0, 1} are of homogeneous Neumann type.
By this choice, we simulate an imbibition and drainage cycle. The order of the spatial
discretization was reduced to one, i.e. piece-wise linear and the tolerance for the LDD-
schemes of 10−6, since the solution is less smooth than in the analytical cases. In
contrast to the manufactured examples above, we only studied the convergence of the
LDD-schemes within the time steps. Therefore, the mesh width ∆x = 0.02 and ∆t = 0.1
are fixed. Note that the time step size here is about 100 times larger than in [68]. This
might partially be a consequence of the different parameters and scaling, but also due
to the L-scheme, whereas Schneider et al. used the Newton method.

The choice of the parameters and the results are shown in Table 8, and the obtained
solutions for LΓ = 0.5 at time t ∈ {100, 200, 400} are depicted in Fig. 11. The solutions
of both methods are very similar, except for the small peaks near x1 = 0. The latter
seem to be an artifact of the numerical computation. Apart from that, the imbibition
and drainage cycle can be clearly observed. Again, the huge parameter LΦ slows down
the LDD-scheme I, whereas the second scheme has no such restriction. Although the
average number of iterations per time step for the LDD-scheme I is smaller than in the
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LDD-scheme δ Lp LT LΦ LΓ Avg.-Iter.

I 10−3 1.0 1.3 40 0.5 868.7
I 10−3 1.0 1.3 40 1.5 (706.1)
II 1.0 — — 0.5 123.6
II 1.0 — — 1.5 214.4

Table 8: Average number of iterations per time step for the realistic problem. The LDD-scheme I with
LΓ = 1.5 does not converge at time t = 158 within 20000 iterations, such that the results in that case are only
shown until then.

Figure 11: Numerical solution for the realistic case over x1, at x2 = 0.5 and the times t = 100 (left), t = 200
(center) and t = 400 (right). Dashed: LDD-scheme I. Solid: LDD-scheme II.

last example, the average number of iterations per time step for the LDD-scheme II
is about eight times smaller. Note that both schemes are used with much smaller lin-
earization parameters than those required by our analysis in Section 4, but give rise to
better results than the required ones.

This time, we consider the convergence properties of the methods within one time
step at the times t = 150 and t = 250. The first is shortly before the flow passes Γ,
while the process switches at Γ from imbibition to drainage around the latter time. For
both schemes, we observed convergence rates close to one (see Fig. 12), such that both
schemes are slow and should be improved by e.g. localized linearization parameters.
Nevertheless, the convergence is almost monotonous, except for the saturation in the
second scheme, and the differences again decrease rapidly at the beginning. Further-
more, note that the LDD-scheme I does not converge at time t = 158 within 20000
iterations, when LΓ = 1.5. Since such problems would require different parameters for
the two subdomains, which makes a proper choice even more challenging, we did not
study the effect of varying parameters.
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Figure 12: Both LDD-schemes converge very slow, and the first one rather linearly, at times t = 150 (left)
and t = 250 (right) of the realistic case for ∆t = 0.1 and ∆x = 0.025 (left) or ∆x = 0.0125 (right). Plotted
are the relative differences of pressure and saturation between consecutive iterations, together with the fitted
convergence rates.

6. Conclusion

Linearization and domain decomposition can be combined into one iteration, the
LDD-scheme. For the considered non-equilibrium two-phase model, the proposed
LDD-schemes lead to unique solutions, which converge towards the semi-discrete so-
lutions of the model, as proved in Section 4. This convergence is global, i.e. inde-
pendently of the initial guess, and requires only a mild restriction on the time step,
independently of the spatial discretization. The inverted formulation for the capillary
pressure in the LDD-scheme II avoids the necessary regularization for the original for-
mulation in the LDD-scheme I.

The stability and robustness of both LDD-schemes were numerically verified for
several spatially two-dimensional cases. The convergence rate can be improved sig-
nificantly by a proper choice of the LDD-parameters. In particular, we pointed out
the practical advantages of the second scheme, when hysteresis is present. While the
analysis leads to good estimates for the linearization parameters, an estimate for the
domain decomposition parameter is still an open problem.

The methods can be generalized, when the porosity φ and the dynamic capillarity
coefficient τ are spatially variable, and when the hysteresis coefficient γ depends on
the saturation s. Furthermore, the required regularity of the parameter functions may
be relaxed to Hölder continuity as in [7, 8]. The degenerated cases λw(0) = 0 and
λn(1) = 0 involve difficulties which need to be investigated in the future, as well as
vanishing dynamic capillarity τ = 0. Nonlinear interface conditions for entry-pressure
models can be studied as soon as extensions for the case of dynamic and hysteretic
capillarity are available.

The convergence properties of the schemes can be further improved by choosing
the LDD-parameters depending on the position or the current solution. Finally, an
a-posteriori error analysis can lead to estimates for efficient and adaptive stopping cri-
teria, which would increase the performance even more.
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