Computational Mathematics

Computational Mathematics

Logo UHasselt Universiteit Hasselt - Knowledge in action


Computational Mathematics Preprints, 2017

UP-17-09: Alexander Jaust, Balthasar Reuter, Vadym Aizinger, Jochen Schütz and Peter Knabner, FESTUNG: A MATLAB / GNU Octave toolbox for the discontinuous Galerkin method. Part III: Hybridized discontinuous Galerkin (HDG) formulation

UP-17-08: David Seus, Koondanibha Mitra, Iuliu Sorin Pop, Florin Adrian Radu and Christian Rohde, A linear domain decomposition method for partially saturated flow in porous media

UP-17-07: Klaus Kaiser and Jochen Schütz, Asymptotic error analysis of an IMEX Runge-Kutta method

UP-17-06: Hans van Duijn, Koondanibha Mitra and Iuliu Sorin Pop, Travelling wave solutions for the Richards equation incorporating non-equilibrium effects in the capillarity pressure

UP-17-05: Hans van Duijn and Koondanibha Mitra, Hysteresis and Horizontal Redistribution in Porous Media

UP-17-04: Jonas Zeifang, Klaus Kaiser, Andrea Beck, Jochen Schütz and Claus-Dieter Munz, Efficient high-order discontinuous Galerkin computations of low Mach number flows

UP-17-03: M.M. Bosschaert, S.G. Janssens, and Yu.A. Kuznetsov, Switching to nonhyperbolic cycles from codim-2 bifurcations of equilibria in DDEs

UP-17-02: Jochen Schütz, David C. Seal and Alexander Jaust, Implicit multiderivative collocation solvers for linear partial differential equations with discontinuous Galerkin spatial discretizations

UP-17-01: Alexander Jaust and Jochen Schütz, General linear methods for time-dependent PDEs

Ph. D. Theses

Stefan Karpinski, Numerical analysis of an interior penalty discontinuous Galerkin scheme for two phase flow in heterogeneous porous media with discontinuous dynamic capillary pressure effects, Hasselt University, Faculty of Sciences, May 2017

Computational Mathematics Preprints, 2016

UP-16-06: Klaus Kaiser and Jochen Schütz, A high-order method for weakly compressible flows

UP-16-05: Stefan Karpinski, Iuliu Sorin Pop, Florin A. Radu, Analysis of a linearization scheme for an interior penalty discontinuous Galerkin method for two phase flow in porous media with dynamic capillarity effects

UP-16-04: Florin A. Radu, Kundan Kumar, Jan Martin Nordbotten, Iuliu Sorin Pop, A robust, mass conservative scheme for two-phase flow in porous media including Hölder continuous nonlinearities

UP-16-03: Sergey Alyaev, Eirik Keilegavlen, Jan Martin Nordbotten, Iuliu Sorin Pop, Fractal structures in freezing brine

UP-16-02: Klaus Kaiser, Jochen Schütz, Ruth Schöbel and Sebastian Noelle, A new stable splitting for the isentropic Euler equations

UP-16-01: Jochen Schütz and Vadym Aizinger, A hierarchical scale separation approach for the hybridized discontinuous Galerkin method