menu

Computational Mathematics


Jochen Schütz

Universiteit Hasselt - Knowledge in action

JOCHEN SCHÜTZ

 

 

Prof. Dr. Jochen Schütz

Vakgroep Wiskunde en Statistiek
Universiteit Hasselt

office: C 265
phone: +32 1126-8222
e-mail: jochen.schuetz@uhasselt.be
office hours: by arrangement, or just knock at the door

  • Singular perturbed problems
  • High-Order Methods for flow problems
  • Specifically:
    • Hybridized DG / Hybrid Mixed methods
    • Asymptotic Preserving Schemes with IMEX-DG methods
  • Adjoint Error Control
  1. K. Kaiser and J. Schütz, A high-order method for weakly compressible flows. IGPM Preprint Nr. 456, 2016, submitted [PDF]
  2. A. Jaust, J. Schütz and V. Aizinger, An efficient linear solver for the hybridized discontinuous Galerkin method. submitted
  3. K. Kaiser, J. Schütz, R. Schöbel and S. Noelle, A new stable splitting for the isentropic Euler equations. IGPM Preprint Nr. 442, 2016, accepted for publication in Journal of Scientific Computing [PDF]. The final publication is available at [link.springer.com]
  4. J. Schütz and V. Aizinger, A hierarchical scale separation approach for the hybridized discontinuous Galerkin method. IGPM Preprint Nr. 439, 2015, submitted [PDF]
  5. A. Jaust, J. Schütz and D. Seal, Implicit multistage two-derivative discontinuous Galerkin schemes for viscous conservation laws, Journal of Scientific Computing, 2016, 69, 866-891 [PDF]. The final publication is available at [link.springer.com]
  6. K. Kaiser and J. Schütz, Asymptotic Preserving Discontinuous Galerkin Method. in Conference Proceedings of the YIC GACM 2015, 2015 [PDF]
  7. A. Jaust, J. Schütz and D. Seal, Multiderivative time-integrators for the hybridized discontinuous Galerkin method. in Conference Proceedings of the YIC GACM 2015, 2015 [PDF]
  8. J. Schütz, K. Kaiser and S. Noelle, The RS-IMEX splitting for the isentropic Euler equations. in Conference Proceedings of the YIC GACM 2015, 2015 [PDF]
  9. J. Schütz and K. Kaiser, A new stable splitting for singularly perturbed ODEs. Applied Numerical Mathematics, 2016, 107, 18-33 [PDF] [Link]
  10. A. Jaust, J. Schütz and M. Woopen, An HDG Method for unsteady compressible flows. Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014, R. Kirby, M. Berzins and J. Hesthaven (eds.), Springer, 2015, 267-274. The final publication is available at [link.springer.com].
  11. A. Jaust, J. Schütz and M. Woopen, A Hybridized Discontinuous Galerkin Method for Unsteady Flows with Shock-Capturing. AIAA Paper 2014-2781, 2014 [PDF]
  12. J. Schütz and S. Noelle, Flux Splitting for stiff equations: A notion on stability. Journal of Scientific Computing, 2015, 64, 522-540 [PDF]. The final publication is available at [link.springer.com].
  13. M. Woopen, G. May and J. Schütz, Adjoint-Based Error Estimation and Mesh Adaptation for Hybridized Discontinuous Galerkin Methods. International Journal for Numerical Methods in Fluids, 2014, 76, 811-834 [PDF][Link]
  14. M. Woopen, A. Balan, G. May and J. Schütz, A Comparison of Hybridized and Standard DG Methods for Target-Based hp-Adaptive Simulation of Compressible Flow. Computers and Fluids, 2014, 98, 3-16 [PDF][Link]
  15. A. Jaust and J. Schütz, A temporally adaptive hybridized discontinuous Galerkin method for time-dependent compressible flows.Computers and Fluids, 2014, 98, 177-185 [PDF][Link]
  16. J. Schütz, An asymptotic preserving method for linear systems of balance laws based on Galerkin's method. Journal of Scientific Computing, 2014, 60, 438-456 [PDF]. The final publication is available at [link.springer.com].
  17. J. Schütz, M. Woopen and G. May, A Combined Hybridized Discontinuous Galerkin / Hybrid Mixed Method for Viscous Conservation Laws. In F. Ancona, A. Bressan, P. Marcati, and A. Marson, editors, Hyperbolic Problems: Theory, Numerics, Applications, pages 915–922. American Institute of Mathematical Sciences, 2012.[PDF]
  18. J. Schütz, S. Noelle, C. Steiner and G. May, A Note on adjoint error estimation for one-dimensional stationary balance laws with shocks. SIAM Journal on Numerical Analysis, 2013, 1, 126-136 [PDF][Link]
  19. J. Schütz and G. May, An Adjoint Consistency Analysis for a Class of Hybrid Mixed Methods. IMA Journal of Numerical Analysis, 2014, 34, 1222-1239 [PDF][Link]
  20. J. Schütz, M. Woopen and G. May, A Hybridized DG/Mixed Scheme for Nonlinear Advection-Diffusion Systems, Including the Compressible Navier-Stokes Equations. AIAA Paper 2012-0729, 2012 [PDF]
  21. J. Schütz and G. May, A Hybrid Mixed Method for the Compressible Navier-Stokes Equations. Journal of Computational Physics, 2013, 240, 58-75 [PDF][Link]
  22. J. Schütz and G. May, A Numerical Study of Adjoint-Based Mesh Adaptation for Compressible Flow Simulation. AIAA Paper 2011-213, 2011
  23. J. Schütz, A Hybrid Mixed Finite Element Scheme for the Compressible Navier-Stokes Equations and Adjoint-Based Error Control for Target Functionals. Dissertation accepted at RWTH Aachen University, 2011 [PDF]
  24. J. Schütz; G. May and S. Noelle, Analytical and numerical investigation of the influence of artificial viscosity in Discontinuous Galerkin methods on an adjoint-based error estimator. Computational Fluid Dynamics 2010 Proceedings to ICCFD2010, A. Kuzmin (ed.), Springer, 2010, 203-209. The final publication is available at [link.springer.com].