A Joint Survival-Longitudinal Modelling Approach for the Dynamic Prediction of Rehospitalization in Telemonitored Chronic Heart Failure Patients

Edmund Njeru Njagi*

Joint work with Dimitris Rizopoulos, Geert Molenberghs, Paul Dendale, and Koen Willekens

*Interuniversity Institute for Biostatistics and statistical Bioinformatics, Universiteit Hasselt, Belgium
Chronic Heart Failure

- Inability of heart to pump enough for body needs.
- Compensatory mechanisms.
- Problems (decompensation).
Rehospitalization and Telemonitoring

- Rehospitalization rates high.
- Remote monitoring after discharge.
- Predict rehospitalization.
Data

- Chronic heart failure (CHF) study.
- Focus on 80 patients telemonitored for 6 months.
- Daily measurements.
Data Continued

- Diastolic, and Systolic Blood Pressure,
- Heart Rate, and Weight.
- Day when patient rehospitalized.
Various methods based on cut-offs.

Predict rehospitalizations using whole history?

Performance of the predictions?
Step 1:

- Joint model for time-to-rehospitalization and marker.

- Model for hazard, given marker.

- Time-varying covariate.
Challenges

- Longitudinal not at every event time.
- Censoring.
- Longitudinal with error.
Step 2:

- Conditional survival probabilities.

\[\text{Prob}\left(T_i^* \geq t + \Delta t \mid T_i^* > t \right) \text{ e.g. } t + \Delta t = 20 + 5 \]

- Equivalently, \(\text{Prob}\left\{ T_i^* \epsilon (t, t + \Delta t) \mid T_i^* > t \right\} \)
Step 2 Continued:

- Confidence intervals for these estimates.
- Additional information for intervention decisions.
Step 3 Continued:

- Quantify predictive performance.
- Based on Area Under ROC curve (AUC) ideas.
Step 3 Continued:

- For given t and given Δt ($\text{AUC}(t)$).
- For range of t’s and given Δt (D.D.I.).
- D.D.I. Dynamic discrimination index.
Step 3 Continued:

Logic:

\[
\text{Prob}\left[\pi_i(t+\Delta t|t) < \pi_j(t+\Delta t|t)|\{T^*_i \in (t, t+\Delta t]\} \cap \{T^*_j > t+\Delta t\}\right]
\]
Model

- Time to first rehospitalization:

\[h_i(t|M_i(t), w_i) = \rho t^{\rho-1} \exp\{\gamma_0 + \gamma' w_i + \alpha m_i(t)\}, \]

- Longitudinal DBP:

\[y_i(t) = m_i(t) + \varepsilon_i(t) = \beta_0 + \beta_1 t + b_0 + \varepsilon_i(t), \]

- “Non-informativeness”.

Dynamic Prediction in CHF Management
Conditional survival probabilities at each of the remaining time points till study end.
Conditional Survival Probabilities, Day 40

Conditional survival probabilities at each of the remaining time points till study end.
Conditional Survival Probabilities, Day 60

Conditional survival probabilities at each of the remaining time points till study end.
Conditional Survival Probabilities, Day 80

Conditional survival probabilities at each of the remaining time points till study end.

Dynamic Prediction in CHF Management
Dynamic Updates of Survival Probabilities

Patient 1: Conditional surv. probs. of an extra 20, 40, 60 and 80 days, with each additional 20 days’ measurements.
Dynamic Updates of Survival Probabilities

Patient 2: Conditional surv. probs. of an extra 20, 40, 60 and 80 days, with each additional 20 days’ measurements.
Predictive Performance

<table>
<thead>
<tr>
<th>Δt</th>
<th>t</th>
<th>AUC(t)</th>
<th>DDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>14</td>
<td>0.6944</td>
<td>0.4875</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>0.7429</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td></td>
<td>0.9552</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td></td>
<td>0.3770</td>
<td></td>
</tr>
<tr>
<td>168</td>
<td></td>
<td>0.0862</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>0.6944</td>
<td>0.4949</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>0.7714</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td></td>
<td>0.8955</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td></td>
<td>0.3770</td>
<td></td>
</tr>
<tr>
<td>168</td>
<td></td>
<td>0.0862</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>0.5814</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td>0.5745</td>
</tr>
</tbody>
</table>
Predictive Performance

<table>
<thead>
<tr>
<th>Δt</th>
<th>DDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.6698</td>
</tr>
<tr>
<td>4</td>
<td>0.6698</td>
</tr>
<tr>
<td>8</td>
<td>0.7433</td>
</tr>
<tr>
<td>16</td>
<td>0.6576</td>
</tr>
</tbody>
</table>
The probabilities and their confidence intervals.

Additional information to aid intervention decisions.

Predictive performance quantified.
More Work On:

- All markers simultaneously.
- Recurrent nature of the time-to-hospitalization.
- Consider more parameterizations, e.g. value plus slope.

Thank you for Your Attention.