SPEAKER:
Prof. Dr. Seth R. Marder

Georgia Institute of Technology, Atlanta, USA

CHAIRIED BY:
Prof. Dr. Wouter Maes

WHEN?
14th September 2017, 15.30-16.30 h

WHERE?
Lecture room H4, Gebouw D, Hasselt University Diepenbeek Campus

MRS/E-MRS Joint Student Chapter, Hasselt University with IMO-IMOMEC, proudly announces to host its

2017 Materials Science Lecture series:
ADVANCED MATERIALS

TOPIC: Interface Chemistry for Organic Electronics and Opto-electronics

Abstract: Organic semiconductors have attracted interest for electronic applications due to their potential for use in low-cost, large-area, flexible electronic devices. Here we will report on recent developments pertaining to surface modifiers and dopants that could impact the charge injection/collection processes in organic light emitting diodes, organic field effect transistors, and organic photovoltaic devices. In particular, we will examine how phosphonic acids assemble on ITO substrates, the impact of the surface dipole on the work function of the ITO and electron transfer kinetics across surface modifiers. We will also discuss the development of metallocenes-based dimers as n-dopants and very briefly describe metal dithiolenes complexes as p-dopants for organic semiconductors and their impact on device performance.

Selected references:

"Solution doping of organic semiconductors using air-stable n-dopants.” Appl. Phys. Lett. 100, 083305 (February 2012)

"A universal method to produce low work function electrodes for organic electronics,” Science 336 (6079), 327-332 (April 2012), DOI: 10.1126/science.1218829

"Reduction of contact resistance by selective contact doping in fullerene n-channel organic field-effect transistors.” Appl. Phys. Lett. 102, 153303-153307 (April 2013, DOI: 10.1063/1.4802237

"Orientation of phenylphosphonic acid self-assembled monolayers on a transparent conductive oxide: A combined NEXAFS, PM-IRAS, and DFT study,” Langmuir 29, 2166-2174 (February 2013, DOI: 10.1021/la304594r

"Production of Heavily n- and p-Doped CVD Graphene with Solution-Processed Redox-Active Metal-Organic Species,” Materials Horizons Advance Article (September 2013, DOI: 10.1039/C3MH00035D

"ITO Interface Modifiers Can Improve V_{oc} in Polymer Solar Cells and Suppress Surface Recombination.” Phys. Chem. Lett. 4 (23), 4038-4044 (November 2013, DOI: 10.1021/jz4021525

The lecture is supported by:

WOG GMD-C7610-00-W01