Publication list Sven Hendrix (ne Müller-Röver)

Ydens E, Palmers I, Hendrix S, Somers V.
Impact factor (2015): 5.397

Lemmens S, Kusters L, Bronckaers A, Geurts N, Hendrix S.
The β2-Adrenoceptor Agonist Terbutaline Stimulates Angiogenesis via Akt and ERK Signaling.

Schönfeld LM, Jahanshahi A, Lemmens E, Schipper S, Dooley D, Joosten E, Temel Y, Hendrix S.
Long-Term Motor Deficits after Controlled Cortical Impact in Rats Can Be Detected by Fine Motor Skill Tests but Not by Automated Gait Analysis.

Cell-Based Delivery of Interleukin-13 Directs Alternative Activation of Macrophages Resulting in Improved Functional Outcome after Spinal Cord Injury.
Impact factor (2015): 7.023

Interleukin-13 immune gene therapy prevents CNS inflammation and demyelination via alternative activation of microglia and macrophages.
Impact factor (2015): 5.997

In vivo IL13-primed macrophages contribute to reduced alloantigen-specific T cell activation and prolong immunological survival of allogeneic mesenchymal stem cell implants.
Impact factor (2015): 5.902

Vangansewinkel T, Geurts N, Quanten K, Nelissen S, Lemmens S, Geboes L, Dooley D, Vidal PM, Peijler G, Hendrix S:
Mast cells promote scar remodeling and functional recovery after spinal cord injury via mouse mast cell protease 6.
FASEB J, 2016, 30(5):2040-57; pii: fj.201500114R.

Lemmens S, Brone B, Dooley D, Hendrix S*, Geurts N*: Alpha-Adrenoceptor Modulation in Central Nervous System Trauma: Pain,
Spasms, and Paralysis - An Unlucky Triad

*equally contributing senior authors

Impact factor: 8.431

Jahanshahi A, Schönfeld LM, Lemmens E, Hendrix S, Temel Y.
In vitro and in vivo neuronal electrotaxis: a potential mechanism for restoration?
Impact factor: 5.137

*equally contributing senior authors
Impact factor: 5.137

Mast cells protect from post-traumatic spinal cord damage in mice by degrading inflammation-associated cytokines via mouse mast cell protease 4.
Impact factor: 5.077

Vidal PM, Lemmens E, Dooley D, Hendrix S:
The role of “anti-inflammatory” cytokines in axon regeneration.
Cytokine & Growth Factor Rev, 2013, 24(1):1-12
Impact factor: 6.537

Vidal PM, Lemmens E, Avila A, Vangansewinkel T, Chalaris A, Rose-John S, Hendrix S:
ADAM17 is a survival factor for microglial cells in vitro and in vivo after spinal cord injury in mice.
Cell Death & Disease, 2013, Dec 12;4:e954
Impact factor: 5.077

Mast cells protect from post-traumatic brain inflammation by the mast cell-specific chymase mouse mast cell protease-4
FASEB J, 2013, 27(3):920-929
Impact factor: 5.480

AT2-receptor stimulation enhances axonal plasticity after spinal cord injury by upregulating BDNF expression.

Neurobiol Dis, 2013, 51:177-91
Impact factor: 5.202
*equally contributing senior authors

Boato F, Rosenberger K, Nelissen S, Geboes L, Peters EM, Nitsch R, **Hendrix S**: Absence of IL-1beta positively affects neurological outcome, lesion development and axonal plasticity after spinal cord injury.

J Neuroinflamm, 2013, 14;10(1):6
Impact factor: 4.902

Vidal PM, Lemmens E, Geboes L, Vangelanewinkel T, Nelissen S, **Hendrix S**: Late blocking of peripheral TNF-α is ineffective after spinal cord injury in mice.

Immunobiology, 2013, 218: 281–284
Impact factor: 3.180

Impact factor: 3.973

Impact factor: 6.314

J Neuroinflamm 2011; 8:183
Impact factor: 3.827

*equally contributing first authors
Impact factor: 6.290

Hechler D, Francesco, Nitsch R, **Hendrix S**: Differential regulation of axon outgrowth and reinnervation by neurotrophin-3 and 4 in the hippocampal formation.

Impact factor: 2.296
Hendrix S, Nitsch R:
Regeneration After CNS Lesion: Help from the Immune System?

Schmitt KRL, Boato F, Diestel A, Hechler D, Kruglov A, Berger F, Hendrix S:
Hypothermia-induced neurite outgrowth is mediated by TNF-alpha.
Impact factor: 5.903

Höltje M, Djalali S, Hofmann F, Münster-Wandowski A, Hendrix S, Boato F, Dreger SC,
A 29-amino acid fragment of Clostridium botulinum C3 protein enhances neuronal outgrowth, connectivity, and reinnervation.
FASEB J, 2009, 23(4):1115-26
Impact factor: 6.401

Siebenhaar F, Magerl M, Peters EMJ, Hendrix S, Metz M, Maurer M:
Mast cell-driven skin inflammation is impaired in the absence of sensory nerves.
Impact factor: 9.773

Hendrix S:
Neuro-immune communication in skin – far from peripheral
Impact factor: 5.251

Kloepper JE*, Hendrix S*, Bodo E, Tiede S, Humphries MJ, Philpott MP, Fässler R, Paus R:
Functional role of β1 integrin-mediated signalling in human skin remodelling
*equally contributing first authors
Impact factor: 3,948

Hendrix S, Picker B, Liezman C, Peters EMJ:
Skin and hair follicle innervation in experimental models: a guide for the exact and reproducible evaluation of neuronal plasticity
Impact factor: 3.259

Hendrix S, Rosenberger K, Kramer P:
The role of T cells in traumatic injuries of the central nervous system
In: Ibarra A (ed.), The Role of Immune Cells in Neurodegenerative Diseases, Research Signpost, Kerala, 2008

CNS-irrelevant T cells enter the brain, cause blood-brain barrier disruption but no glial pathology.
Impact factor: 3.673

Hendrix S, Nitsch R:
The role of T helper cells in neuroprotection and regeneration
Impact factor: 2,920

Hendrix S, Peters EMJ:
Neuronal plasticity and neuroregeneration in the skin – The role of inflammation
Impact factor: 2,920

Schmitt KR, Kern C, Lange PE, Berger F, Abdul-Khaliq H, Hendrix S:
S100B modulates IL-6 release and cytotoxicity from hypothermic brain cells and inhibits hypothermia-induced axonal outgrowth
Impact factor: 2.121

Winkelmann A, Hendrix S, Kiessling C:
What Do Students Actually Do During a Dissection Course? First Steps Towards Understanding a Complex Learning Experience
Impact factor: 2,571

Peters EMJ, Raap U, Welker P, Tanaka H, Matsuda H, Pavlovic-Masnicosa S, Hendrix S, Pincelli C:
Neurotrophins act as neuroendocrine regulators of skin homeostasis in health and disease
Impact factor: 2.254

Hechler D, Nitsch R, Hendrix S:
GFP-transgenic mouse models for the study of axonal growth and regeneration *in vitro*
Impact factor: 5,595

Macrophage/microglia activation factor expression is restricted to lesion-associated microglial cells after brain trauma
Impact factor: 5,013

Gölz G, Uhlmann L, Lüdecke D, Markgraf N, Nitsch R, Hendrix S:
The cytokine/neurotrophin axis in peripheral axon outgrowth
Impact factor: 3,709
Schmitt KRL, Kern C, Berger F, Ullrich O, Hendrix S*, Abdul-Khaliq H*: Methylprednisolone attenuates hypothermia- and rewarming-induced cytotoxicity and IL-6 release in isolated primary astrocytes, neurons and BV-2 microglia cells
*equally contributing senior authors
Impact factor: 2.092

Hendrix S, Warnke K, Siebenhaar F, Peters EMJ, Nitsch R, Maurer M: The majority of brain mast cells in B10.PL mice is present in the hippocampal formation
Impact factor: 2.092

Peters EMJ, Hendrix S, Götz G, Klapp BF, Arck PC, Paus R: Nerve Growth Factor and its Precursor Differentially Regulate Hair Cycle Progression in Mice
Impact factor: 2.449

Hendrix S, Handjiski B, Peters EMJ, Paus R: A guide to assessing damage response-pathways of the hair follicle: Lessons from cyclophosphamide-induced alopecia in mice
J Invest Dermatol, 125 (1), 42-51, 2005
Impact factor: 4.406

Bläsing H*, Hendrix S*, Botchkarev VA, Paus R: Pro-inflammatory cytokines upregulate the skin immunoreactivity for NGF, NT-3, NT-4 and their receptor, p75NTR in vivo
Arch Dermatol Res, 296: 580–584, 2005
*equally contributing authors
Impact factor: 1,219

Brit J Dermatol, 152(6):1125-33, 2005
Impact factor: 2.978

Peters EMJ, Kuhlmei A, Tobin DJ, Müller-Röver S, Klapp BF, Arck PC Stress exposure modulates peptidergic innervation and degranulates mast cells in murine skin
Brain Behav Immun, 19(3):252-62, 2005
Impact factor: 3,520

Magerl M, Paus R, Farjo N, Müller-Röver S, Peters EMJ, Foitzik K, Tobin DJ: Limitations of human occipital scalp hair follicle organ culture for studying the effects of minoxidil as a hair growth enhancer
Impact factor: 1.707
Müller FB, Müller-Röver S, Korge BP, Kapas S, Philpott MP:
Adrenomedullin: expression and possible role in human skin and hair growth
Impact factor: 2.659

Impact factor: 7.663

Peters EMJ, Botchkarev VA, Müller-Röver S, Moll I, Rice FL, Paus R:
Developmental timing of hair follicle and dorsal skin innervation in mice
Impact factor: 3.848

Bull JJ, Müller-Röver S, Chronnell CMT, Paus R, Philpott MP, McKay IA:
Contrasting Expression Patterns of CCAAT/Enhancer-Binding Protein Transcription Factors in the Hair Follicle and at Different Stages of the Hair Growth Cycle
Impact factor: 3.746

Chronncl CM, Ghali L, Quinn AG, Ali R, Bull JJ, McKay IA, Philpott MP, Müller-Röver S:
Human beta defensin-1 and -2 expression in human hair follicles and upregulation in acne vulgaris lesions
Impact factor: 4,645

Müller-Röver S, Handjiski B, van der Veen C, Eichmüller S, Foitzik K, McKay IA, Stenn KS, Paus R:
A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages
Impact factor: 4,645

Magerl M, Tobin DJ, Müller-Röver S, Lindner G, Hagen E and Paus R:
Patterns of proliferation and apoptosis during murine hair follicle morphogenesis
Impact factor: 4,645

Bull JJ, Müller-Röver S, Patel SV, Chronnell CMT, McKay IA, Philpott MP:
Contrasting Localization of c-Myc with other Myc Superfamily Transcription Factors in the Human Follicle and during the Hair Growth Cycle
Impact factor: 4,645
Foitzik K, Lindner G, Müller-Röver S, Maurer M, Botchkareva N, Botchkarev VA, Handjiski B, Metz M, Hibino T, Soma T, Dotto P, Paus R: Control of murine hair follicle regression (catagen) by TGF-β1 in vivo
FASEB J, 14:752-76, 2000
Impact factor: 9.249

Mecklenburg L, Tobin DJ, Müller-Röver S, Handjiski B, Wendt G, Peters EJM, Pohl S, Moll I, Paus R: Active hair growth (anagen) is associated with angiogenesis
Impact factor: 4.539

Brit J Dermatol, 142:862-873, 2000
Impact factor: 2.214

Am J Pathol, 156:1041-1053, 2000
Impact factor: 6.971

Am J Pathol, 156:1395-1405, 2000
Impact factor: 6.971

Müller-Röver S, Bulfone-Paus S, Handjiski B, Welker P, Sundberg JP, McKay IA, Botchkarev VA, Paus R: Intercellular Adhesion Molecule-1 and Hair Follicle Regression
Impact factor: 2.610

Paus R, Müller-Röver S, Botchkarev VA: Chronobiology of the hair follicle: Hunting the “hair cycle clock”
Impact factor: 0.31

Paus R, Müller-Röver S, Christoph T: Immunology of the hair follicle: a short journey into terra incognita
Impact factor: 0.31

and classification of distinct stages of hair follicle morphogenesis

J Invest Dermatol, 113:523-532, 1999
Impact factor: 4,645

Müller-Röver S, Rossiter H, Lindner G, Peters EMJ, Kupper TS, Paus R:
Hair follicle apoptosis and Bcl-2

Impact factor: 0,310

Müller-Röver S, Tokura Y, Welker P, Furukawa F, Wakita H, Takigawa M, Paus R:
E- and P-cadherin expression during murine hair follicle development and cycling

Exp Dermatol, 8:237-46, 1999
Impact factor: 2,183

Müller-Röver S, Botchkarev VA, Peters EJM, Panteleyev A, Paus R:
Distinct patterns of NCAM expression are associated with defined stages of murine hair follicle morphogenesis and regression

J Histochem Cytochem, 46:1401-1410, 1999
Impact factor: 2.675

Eichmüller S, van der Veen C, Moll I, Hermes B, Hofmann U, Müller-Röver S, Paus R:
Clusters of perifollicular macrophages in normal murine skin: physiological degeneration of selected hair follicles by programmed organ deletion

J Histochem Cytochem, 46:361-370, 1998
Impact factor: 2,536

Panteleyev AA, van der Veen C, Rosenbach T, Müller-Röver S, Sokolov VE, Paus R:
Towards defining the pathogenesis of the hairless phenotype

Impact factor: 4,822

Paus R, van der Veen C, Eichmüller S, Kopp T, Müller-Röver S, Hofmann U:
Generation and cyclic remodelling of the hair follicle immune system (HIS)

J Invest Dermatol, 111: 7-18, 1998
Impact factor: 4,822

Spontaneous hair follicle cycling may influence the development of murine contact photosensitivity by modulating keratinocyte cytokine production.

Cell Immunol, 178:172-179, 1997
Impact factor: 2.125