A Framework for Mobility Pattern Mining and Privacy-Aware Querying of Trajectory Data

Despina Kopanaki
Dept. of Informatics
University of Piraeus
Piraeus, Greece
dkopanak@unipi.gr

Nikos Pelekis
Dept. of Statistics & Ins. Science
University of Piraeus
Piraeus, Greece
npelekis@unipi.gr

Aris Gkoulalas-Divanis
Smarter Cities Technology Centre
IBM Research– Ireland
Dublin 15, Ireland
arisdiva@ie.ibm.com

Marios Vodas
Dept. of Informatics
University of Piraeus
Piraeus, Greece
mvodas@unipi.gr

Yannis Theodoridis
Dept. of Informatics
University of Piraeus
Piraeus, Greece
ytheod@unipi.gr

ABSTRACT

Mobility data sources feed larger and larger trajectory databases nowadays. Due to the need of extracting useful knowledge patterns that improve services based on users’ and customers’ behavior, querying and mining such databases has gained significant attention in recent years. Existing approaches for privacy-aware mobility data sharing aim at publishing an anonymized version of the mobility dataset, operating under the assumption that most of the information in the original dataset can be disclosed without causing any privacy violations. In this paper, we assume that the majority of the information that exists in the mobility dataset must remain private and that the data has to stay in-house to the hosting organization. To facilitate privacy-aware sharing of the mobility data we develop a trajectory query engine that allows subscribed users to gain restricted access to the database to accomplish various analytic tasks. The proposed engine (i) audits queries for trajectory data to block potential attacks to user privacy, (ii) supports range, distance, and k-nearest neighbor spatial and spatiotemporal queries, and (iii) preserves user anonymity in answers to queries by (a) returning a set of carefully crafted, realistic fakes trajectories, and (b) ensuring that no user-specific sensitive locations are reported as part of the returned trajectories. Along this direction, we also present Private-HERMES, a platform that provides a two-dimensional benchmark framework that includes: (i) the aforementioned privacy-aware trajectory query engine and (ii) a progressive analysis framework, which, apart from anonymization methods for data publishing, includes various well-known mobility data mining techniques to evaluate the effect of anonymization in the querying and mining results.

1 This paper is a combined version of [22] and [23].

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

Copyright 2012 ACM X-XXXX-XXX-XXXX/XXXX …$10.00.

General Terms
Algorithms, Management, Design, Experimentation

Keywords
Privacy, Anonymity, Mobility Data, Privacy-aware query engine, Trajectory Database, Data Mining

1. INTRODUCTION

The advances in mobile devices, positioning technologies and spatiotemporal database research, have made possible the tracking of mobile devices at a high accuracy, while supporting the efficient storage of mobility data in databases. From this perspective, we have nowadays the means to collect, store and process mobility data of an unprecedented quantity, quality and timeliness. As ubiquitous computing pervades our society, user mobility data represents a very useful but also sensitive source of information. On one hand, the movement traces of the users can aid traffic engineers, city managers and environmentalists towards decision making in a wide spectrum of applications, such as urban planning, traffic engineering and environmental pollution. On the other hand, the disclosure of mobility data to untrusted parties may jeopardize the privacy of the users whose movement is recorded, leading the way to abuse scenarios such as user tailing and profiling. As it becomes evident, the sharing of user mobility data for analysis purposes has to be done only after the data has been protected against potential privacy breaches.

Recently, several methodologies have been proposed to enable privacy-preserving mobility data sharing. Existing approaches, such as ([1],[2],[9],[10],[16],[30]), aim at publishing an anonymous counterpart of the original dataset in which adversaries can no longer match the recorded movement of each user to the real identity of the user. A common assumption that is implicitly made in these approaches is that most of the information that is stored in the original database can be disclosed without causing any privacy violations. In this paper, we refrain from this assumption as it can be proven unrealistic in certain data sharing scenarios. Instead, we employ a more conservative approach to privacy by assuming that the majority of the information that is captured in the mobility dataset must remain private and that the data has to stay in-house to the hosting
organization. Our assumption is primarily based on the following arguments:

- The data owner may be reluctant to publish the entire mobility dataset, or conformance to certain business regulations may require that the dataset resides in-house to the hosting organization.

- Mobility datasets can typically support many types of data analysis. In order for the anonymous dataset to be useful in practical applications, it is necessary that the anonymization approach can offer specific utility guarantees and this, in turn, requires knowledge of the intended workload. When the data resides in-house, the privacy preservation algorithms can support many types of data analysis (which may be unknown apriori) by guaranteeing at the same time the privacy of the users, whose information is recorded in the dataset.

- Data sharing policies may change from time to time and new types of privacy attacks to mobility data may be identified, yielding previously released data unprotected. In such events, it is crucial for the data owner to have knowledge of the sensitive information that was leaked, as well as be capable of safeguarding the data based on the new evidence. When the data resides in-house, the privacy-aware query engine can be updated to conform to the new policies and block new types of attack. Additionally, the auditing of queries allows the data owner to have knowledge about the extent of the data leakage by examining the history of user queries to the database and keeping track of the returned answers.

Data sharing scenario: A data holder, such as a telecom operator or a governmental agency, collects movement information for a community of people. The raw movement data, capturing the location of each individual in the course of time, is processed to generate user trajectories that are subsequently stored in a database. Apart from the analysis that this data undergoes within the premises of the hosting organization, we assume that at least part of the data has to be made available to external, possibly untrusted, parties for querying and analysis purposes. As is evident, direct publishing of this information, even if the data is first deprived from any explicit identifiers, would severely compromise the privacy of the individuals whose movement is recorded in the database. This is due to the fact that malevolent end-users could potentially link the published trajectories to sensitive locations of the individuals (such as their houses), thus identify the users. To ensure privacy-aware sharing of in-house mobility data, a mechanism is necessary to control the information that is made available to external parties when they query the database, so that only nonsensitive information leaves the premises of the hosting organization.

In this paper, we realize and extend the basic design principles that were discussed in [8] by introducing HERMES++, a novel query engine for sensitive trajectory data that allows subscribed end-users to gain restricted access to the database to accomplish various analysis tasks. HERMES++ can shield the trajectory database from potential attacks to user privacy, while supporting popular queries for mobility data analysis, such as range queries, distance queries and nearest neighbor queries. Similarly to [8], HERMES++ operates by retrieving real user trajectories from the database and mixing them with carefully crafted fake trajectories in order to reduce the confidence of attackers regarding the real trajectories in the query result. However, unlike the privacy-based engine that was described in [8], HERMES++ achieves to (a) audit end-user queries and effectively block an extended set of attacks to user privacy, securing the database against user identification, sensitive location tracking, and sequential tracking attacks, (b) generate smooth and more realistic fake trajectories that preserve the trend of the original data and use them to augment the real ones in returned answers to queries, and (c) ensure that no sensitive locations that would lead to user identification are reported as part of the returned trajectories. The latter goal is achieved by modifying parts of the trajectories that are close to sensitive locations, such as the houses of the users.

Moreover, in this paper we present Private-HERMES, a benchmark framework for privacy-preserving mobility data querying and mining methods. The first dimension of this benchmark w.r.t. privacy issues involves in-house stored data and privacy-aware query answering. Private-HERMES incorporates HERMES [21], a query engine based on a powerful query language for trajectory databases, which enables the support of aggregative queries. HERMES supports a variety of well-known queries such as range, nearest neighbor, topological, directional queries, etc. On top of this functionality, HERMES++ audits queries for trajectory data to block potential attacks to user privacy, supports the most popular spatiotemporal queries (range, distance, k-NN) and preserves user privacy by generating carefully crafted, realistic fake trajectories. The second dimension w.r.t. privacy that is supported by our benchmark involves privacy-preserving MOD publishing. The algorithms that have been integrated in Private-HERMES to help anonymize trajectories are NWA [1] and W4M [2]. The objective is to support the evaluation of such anonymization techniques and to study their effect in the utility of the sanitized data, when compared with queries into the original MOD.

Our work makes the following contributions:

- It improves the design principles of [8] and proposes a full-fledged system that supports privacy-aware sharing of in-house mobility data.

- The proposed fake generation algorithm uses a sophisticated approach to generate smooth, realistic fake trajectories that respect the general trend of the real trajectories in the query result. By preserving the trends of the real trajectories when generating fakes, our framework minimizes the impact of the privacy mechanism to the outcome of the mobility data analysis.

- The proposed auditing mechanism can effectively identify and block a range of potential attacks that could lead to user identification or tracking.

- The demonstration of Private-HERMES, a benchmark framework for privacy-preserving mobility data querying and mining methods.

The rest of this paper is organized as follows. Section 2 surveys the related work. In Section 3, we present the types of attacks to user privacy that are blocked by the privacy-aware query engine. Section 4 discusses in detail the auditing and the fake trajectory generation algorithms that are implemented as part of the query engine to support its functionality. In section 5, Private-HERMES benchmark framework is described. Section 6 sheds light on implementation issues of the engine. In Section 7, we experimentally evaluate the proposed framework demonstrating its effectiveness towards blocking attacks to user privacy, while
generating realistic fake trajectories. Section 8 concludes this work.

2. RELATED WORK
Privacy-preserving data publishing has been the focus of attention of the database community for almost three decades. The research in this domain has progressed along two main directions: providing on-site, restricted access to in-house data and providing off-site publication of sanitized data. In the first category, methodologies have been proposed for disclosure control in statistical databases [3]. These approaches support only count and/or sum queries, since no other information can be made available to the inquirer.

The second direction in privacy-preserving data publishing collects methodologies that provide off-site publication of sanitized data. Several methodologies have been proposed to support different data types and analysis tasks ([1],[2],[13],[16],[27],[29],[30]). Since our approach aims at concealing sensitive trajectory information, in the following we focus our attention on approaches that protect sensitive mobility data.

Hoh and Gruteser [9] present a data perturbation algorithm that is based on path crossing. The approach identifies when two nonintersecting trajectories that belong to different users are “sufficiently” close to each other in the original dataset and generates a fake crossing of these trajectories in the sanitized counterpart to prevent adversaries from tracking a complete user’s trajectory.

Terrovitis and Mamoulis [30] consider datasets that depict user movement in the form of sequences of places that each user has visited, set out in the order of visit. They propose an anonymization approach that suppresses selected places from user trajectories to protect users from adversaries who hold projections of the data on specific sets of places.

Nergiz, et al. [16] also rely on the sequential nature of mobility data and propose a coarsening strategy to generate a sanitized dataset that consists of K-anonymous ([27],[29]) sequences. The algorithm consolidates the trajectories of the original dataset into clusters of K and then anonymizes the trajectories in each cluster.

Abul, et al. [1] propose a K-anonymity approach that relies on the inherent uncertainty that exists with respect to the whereabouts of the users in historical datasets representing user mobility. The anonymity algorithm identifies trajectories that lie close to each other in time, employs space translation and generates clusters of at least K trajectories. Each cluster of K trajectories forms an anonymity region and the co-clustered trajectories can be released. In order to achieve space-time translation, the authors proposed W4M [2], which uses a different distance measure that allows time-warping.

The most related work to ours is the study of Gkoulalas-Divanis and Verykios [8], which describes the design principles of a query engine that protects user privacy by generating fake trajectories. The idea behind [8], and also behind this work, is that malevolent users who query the trajectory database should not be able to discover (with high confidence) any real trajectories that are returned as part of the answer set of their queries, while they can use the returned data to support their analytic tasks. A shortcoming of [8] is that the time dimension was not explicitly handled in the overall design. Moreover, the interpolation technique that was proposed for the generation of the fake trajectories was applied on pairs of real trajectories and thus could fail to account for the actual trend in the query region, while also leading to the generation of non-smooth fake trajectories. The current proposal fully implements the proposed privacy engine and, to our knowledge, is the first to introduce a Moving Object Database Engine (MOD) with privacy-preservation functionality.

On the other hand, Private-HERMES also gives the ability to users to evaluate the utility either of the fake or the sanitized trajectories via a variety of well-known mobility data mining algorithms, i.e. various types of clustering, frequent sequential patterns, etc. The idea is that by adding fake trajectories (that affect the cardinality of the MOD), as well as perturbing original ones (that affects the shape of the MOD) should not destroy the patterns hidden in the original MOD. Such an evaluation can be done by using clustering and frequent pattern mining techniques, appropriate for mobility data. Towards this goal, Private-HERMES incorporates three state-of-the-art trajectory clustering algorithms, namely TRACLUS [12], T-Optics [14] and CentTR-I-FCM [24]. K-medoids [11] and Bisecting K-medoids [28] are also included as representative examples of traditional clustering techniques that can applied in MOD with the special feature that the user can choose different distance functions between the trajectories (i.e. grouping only by their starting or destination point, without taking into account the whole route) [20].

In particular for trajectory clustering, a useful requirement is to extract a compact representation of the clusters found, in terms of “representative” or “typical” trajectories that effectively represent the cluster sets. To achieve this, Private-HERMES supports CenTra “centroid” trajectories [24] and TRACLUS “typical” trajectories [12]. Last but not least, the user may also work on large datasets by first sampling the initial MOD by appropriate methods that preserve the hidden patterns by simultaneously covering the whole space [25].

The above presented functionality is integrated in HERMES MOD engine by appropriately extending the query language with new constructs, in a fashion originally proposed in [19]. This allows users to progressively analyze the MOD and interchange between querying and mining operations.

3. PRIVACY ATTACKS
HERMES++ can effectively protect the privacy of the users by blocking three types of attacks that malevolent users may try to pursue in the original database:
• **User identification attack**: In this attack the identity of the user can be exposed by ad hoc queries involving overlapping spatiotemporal regions.

• **Sensitive location tracking attack**: In this attack the malevolent user tries to map match one or more locations in a user trajectory to known locations that can effectively expose the identity of the user (e.g., the address of a house or a betting office). We call such locations *sensitive* for the user as they should not be disclosed to the attackers.

• **Sequential tracking attack**: In this attack the attacker is tracked down through his trajectory by a set of focused queries on regions that are near to each other, in terms of space and time. The attacker can “follow” the user and learn the places that he has visited.

The user identification attack is possible when the query engine answers a query involving a spatial (or spatiotemporal) region and then another, more specific query, involving part of this region. In this case, the attacker can breach the enforced privacy model by identifying fake trajectories which, in turn, increases his confidence regarding the real trajectories in the system. To block this attack, we use auditing to track the queries initiated by each end-user in the system and deny answering overlapping queries.

The sensitive location tracking attack allows malevolent users to distinguish real trajectories from fakes, learn sensitive locations that real users have visited, and (possibly) reveal the identity of these users. To block these attacks, we protect the starting and the ending location of trajectories, as well as any other (owner-specified) location in the course of the user trajectory that can be considered as sensitive for the user. As an example of this type of attack, assume a query that involves region Q_4, shown in Figure 1. Since in this region the trajectory has its end point to a sensitive location, the attacker can map-match this location and reveal the user’s identity. The attack can succeed even if fake trajectories are generated in this region because the probability of a fake trajectory having an end point to a sensitive location is low, while this is very common for real users. To block the sensitive location tracking attack, our auditing approach identifies sensitive locations of trajectories that appear in the query window and proceeds to dislocate them so that the sensitive location is not disclosed.

Last, in the sequential tracking attack an attacker attempts to “follow” a user trajectory in the system by using a set of focused queries involving spatiotemporal regions that are adjacent to each other. To block this attack, the proposed auditing algorithm takes the necessary measures to smoothly continue the movement of fake trajectories from neighboring regions (returned as part of previous queries of the user) to the current region, so as to prohibit attackers from distinguishing the fake trajectories from the real ones.

4. **ALGORITHMS**

In the following sections we present the algorithms that deliver the functionality of HERMES++. Section 4.1 describes the algorithm that we designed for the generation of realistic fake trajectories. In Section 4.2, we present the auditing technique that is used to audit user queries and preserve the privacy in the answers to the queries.

4.1 Fake trajectory generation

The proposed fake trajectory generation algorithm has the ability to produce trajectories that follow the trend of the input set of real trajectories, thus minimize the potential of privacy breaches when query results are released to the end-users. This algorithm plays a central role in our privacy-aware query engine. When a user poses a query to the database, the engine provides the answer only if at least L real user trajectories exist in the area. The lower bound L in the number of users is a simple way to prevent answering queries whose original result set is very small (e.g., a range query in a region with very few trajectories), as in this case the generated fake trajectories may fail to capture the trend of the real trajectories. Prior to releasing any real trajectory, an approach is employed (see Section 4.2) to protect any sensitive locations in the trajectory that could be used by malevolent end-users to identify the corresponding user. To produce the answer set for the query, the engine generates N fake trajectories, where N is an owner-specified threshold. The proposed algorithm has the ability to produce fake trajectories for different types of queries, such as range, nearest neighbor and distance queries, while it is used by our auditing mechanism (Section 4.2) to handle different types of attacks from malevolent users.

Unlike the simple fake generation approach of [8], the fake trajectory generation algorithm that we propose in this work is based on the idea of the *Representative Trajectory Generation* (RTG for short) algorithm, introduced by Lee et al. in [12]. The main idea of this algorithm is that the resulting representative trajectory describes the overall movement of a set of directed segments, produced after the partitioning of a set of trajectories. The partitioned trajectories (i.e., directed segments) are clustered according to a distance function taking into account the parallel, perpendicular and angle distance of the segments. The outcome of the RTG algorithm, applied on each cluster, produces a smooth (more or less) linear trajectory that best describes the corresponding cluster. However, similarly to [8], the RTG algorithm also fails to consider the temporal dimension of the generated trajectory. As a result, our proposed fake trajectory generation algorithm has to transform the RTG output by appropriately integrating the time dimension into the fake trajectory generation process.

Algorithm 1 Fake Trajectory Generation

```
1: function FAKE-GEN(trajectory $T$, minimum number of points, $MinLns$, smoothing parameter $\gamma$, time step of sampling rate, $Timestep$, $MBB(MinLns, MaxLns, \gamma)$)
2: $\text{fake_trajectory} \leftarrow \text{RTG}(T, MinLns, \gamma)$
3: calculate initial timestamp $t_0$ of the fake trajectory
4: $t_{max} \leftarrow t_0 + |\text{fake_trajectory}| \times Timestep$
5: if $t_{max} > t_{max}$ then
6:   repeat
7:      Douglas_Peucker($\text{fake_trajectory}$)
8:   $f \leftarrow f/2$
9:   $t_{max} \leftarrow t_0 + |\text{fake_trajectory}| \times Timestep$
10:   until $t_{max} < t_{max}$
11:   $l_{max} \leftarrow \text{random}(l_{avg} + 2 \times l_{avg})$
12:   if $l_{max} > 2 \times l_{avg}$ then
13:     $l_{max} \leftarrow l_{max} \times \text{random}(1,1_{max}/l_{avg})$
15:     for each $p_i \text{of fake_trajectory}$ do
16:       set timestamps of the initial and final point of $p_i$
17:       calculate speed $U_i$ of $p_i$
18:       if $U_i < U_{min}$ or $U_i > U_{max}$ then
19:         repeat
20:            $l \leftarrow \text{random}(l_{min}, l_{max})$
21:            calculate new speed $U_i$ of $p_i$
22:       until $U_{min} < U_i < U_{max}$
23:       calculate angle $\theta_i$
24:       define coords of new ending point based on $l_i$
25:       map match fake_trajectory
26: return fake_trajectory
```
Algorithm 1 provides the details of our fake trajectory generation approach. The algorithm takes as input a set of line segments \(S\), resulting from a set of trajectories which form the answer to a user query. In the first step (line 2), the representative trajectory is produced based on this set of line segments of trajectories. For simplicity reasons, in Figure 2 we depict segments as consecutive parts of trajectories; however, in the general case, they could be disconnected and independent segments that are filtered in a way that all move towards (more or less) the same direction. This is because the RTG algorithm assumes that all segments follow the same directional pattern. In the sequel, the RTG algorithm sweeps a rotated vertical line according to the average direction vector towards the major axis, counting the number of line segments that are either the starting or the ending point of a line segment. If the resulting number is equal to or greater than a threshold \(MinLns\), the algorithm calculates the average coordinate of those points and assigns the average into the set of representative trajectory; otherwise, it proceeds to the next point. To avoid segments that are too close to each other, a smoothing parameter \(\gamma\) is utilized. The final outcome of this step is the trajectory with the dotted line shown in Figure 2.

After calculating the representative trajectory (line 2), the algorithm inserts the time dimension to each line segment and performs additional computations to adjust it and make it more plausible. In detail, we examine and require for a realistic length and speed for the 3D segments of the fake trajectory. If these measures get unusual values then an adversary may be able to identify which trajectory is the fake one. In Figure 2, the grey solid line depicts the final fake trajectory after assigning the time dimension to the segments and adjusting them to be more realistic. In order to achieve this, the algorithm takes as parameter the spatiotemporal Minimum Bounding Box (MBB), which is set by the auditing mechanism and may be either the MBB of the user’s query parameter (in the case of range queries), or the MBB that is formed by the whole trajectories whose parts belong to the results of user’s query. An additional set of input parameters that is provided by the auditing mechanism corresponds to statistical computations regarding \(d_{\min}, d_{\max}, l_{\min}, l_{\max}\), which are the minimum and maximum trajectories’ duration and segments’ length, respectively, and \(avgU_{\min}, avgU_{\max}, lavg\), which are the average maximum and minimum speed, as well as, the average length of the segments, respectively. The Timestep parameter is the duration of a line segment and is considered to be constant indicating that the moving object transmits its location update at regular temporal intervals. The outcome of the algorithm is a set of line segments forming a trajectory, which are stored in the array \(\text{fake}_\text{trajectory}\).

Having calculated the set of line segments, the algorithm computes the initial timestamp \(t_0\) that the fake trajectory will start at (line 3). The initial timestamp is defined as \(t_0 = t_{MBBmax} + \text{random}(0,SP)\), where \(SP = (l_{\max} - l_{\min}) \times \text{random}(d_{\min},d_{\max})\) corresponds to a value used to ensure that time \(t_0\) of the first point of the fake trajectory will not be placed near \(t_{MBBmax}\). Moreover, the maximum timestamp of the fake trajectory should not exceed \(t_{MBBmax}\), otherwise it will differ from the real trajectories. In order to ensure this, the maximum timestamp \(t_{\text{max}}\) of the fake trajectory is calculated (line 4) as a function of the initial timestamp \(t_0\) and the duration of the fake trajectory (i.e., \([\text{fake}_\text{trajectory}]* T\)). If \(t_{\text{max}} \leq t_{MBBmax}\) then a line simplification procedure is applied to reduce the number of line segments (lines 6-10). Douglas-Peucker (line 6) [6] is an algorithm that compresses the generated segments by using a polyline representation and a parameter \(f\) that corresponds to a distance threshold, defined as a percentage of the trajectory’s length. The compression procedure is repeated until \(l_{\text{max}} < l_{\text{MBBmax}}\) and in each iteration the parameter \(f\) is halved.

Having calculated the initial timestamp, the algorithm adjusts the maximum length \(l_{\text{max}}\) of the segments that have been generated (lines 11-14) in order to manipulate long segments that will lead to the generation of non-realistic fake trajectories. Specifically, if \(l_{\text{max}}\) is greater than twice the average length \(l_{avg}\), then \(l_{\text{max}}\) is being recalculated as a random value between \(l_{avg}\) and the twice of \(l_{avg}\). Otherwise, the algorithm sets \(l_{\text{max}}\) randomly between \(l_{avg}\) and \(l_{\text{max}}\). Then, the algorithm enters a loop (line 15) and assigns the time dimension to each line segment of the fake trajectory. The initial timestamp \(t_0\) of the first line segment has been calculated in previous steps. The timestamp of the ending point of this segment equals to \(t_0\) increased by the sampling rate’s duration, i.e., is equal to \(t_0 + \text{Timestamp}\). The ending timestamp of the initial segment will be the starting timestamp of the next segment. Generally, for each line segment it holds that \(t_{i+1} = t_i + \text{Timestamp}\), where \(0 \leq i < [\text{fake}_\text{trajectory}]\).

After assigning the time dimension to the current segment \(p_i\) (line 16), the algorithm proceeds to calculate the speed \(U_i\) for each segment \(p_i\) (line 17) and checks if it lies within \(avgU_{\min}\) and \(avgU_{\max}\) (lines 18-22). If it is outside this range, the algorithm calculates a random segment length \(l\), between \(l_{\min}\) and \(l_{\max}\), such that the speed \(U_i\) of the specific segment is within the limits. As a final step, the coordinates of the new ending point are identified based on the length of segment \(l\) that was calculated before (lines 23-24).

Depending on the direction of the segment and its angle \(\phi_i\) with the \(x\)-axis, the fake trajectory generation algorithm calculates the new coordinates \((x_{i+1}, y_{i+1})\). The angle \(\phi_i\) is given by \(\phi_i = \tan(2(y_{i+1} - y_i, x_{i+1} - x_i))\), while the new coordinates \((x_{i+1}, y_{i+1})\) are calculated as: \(x_{i+1} = x_i + l \times \cos(\phi)\) and \(y_{i+1} = y_i + l \times \sin(\phi)\), where \(l\) is the length of the line segment. In the case that trajectory data are related to an underlying road network, the fake trajectory generation algorithm map matches the generated fake trajectory with the specific road network by employing a map matching algorithm (line 25) [4]. This functionality of the algorithm can lead to a more realistic representation of the fake trajectory and thus disincline adversaries from identifying real users. After calculating the new coordinates the algorithm proceeds to the next segment and the procedure continues until all line segments are examined. Finally, the generated fake trajectory is returned (line 26).
demonstrates the outcome of the Fake-Gen algorithm (green trajectory) with respect to the RTG algorithm (red trajectory), when applied to a set of trajectories (i.e. blue trajectories). Obviously, the result of Fake-Gen produces a more realistic representation of the trend of the real trajectories.

4.2 Query auditing
Algorithm 2 presents our query auditing approach for shielding the database against malevolent queries. When a new query is submitted to the engine, the auditing algorithm first examines if this query involves an area that (partially) overlaps with that of a previous query, submitted by the same end-user. If this is the case, then it denies servicing the query (lines 2-3) to block a potential user identification attack. If the previous test is negative, the auditing mechanism executes the actual query of the user and retrieves the result set (line 4). In order to prohibit the identification of an individual by an adversary that is able to link sensitive locations that are visited by a user (e.g., the home of the user) with trajectories that belong to the specific query, we propose the Hide Sensitive Location Algorithm (line 5). This algorithm takes as input a set of sensitive locations SL, a set of trajectories T and the MBB formed by user's query. Initially, the algorithm selects all sensitive locations SL' that lie inside the MBB (line 2 of Algorithm 3). For each trajectory of the given set T, it defines those sensitive locations, SL'_i, that correspond to the current trajectory (lines 3-4). For every sensitive location, SL'_i, it examines if fake sub-trajectories that hide the sensitive locations have been previously computed for this trajectory and retrieves them from History (lines 5-7). Otherwise, it computes a new synthetic (fake) trajectory that is then stored for future reference (lines 9-14).

The procedure that is followed by Algorithm 2 to generate and update the synthetic sub-trajectory is based on a variant of the GSTD trajectory synthesize, called GSTD*, proposed in [24]. GSTD* produces trajectories following complex mobility patterns based on a given distribution of spatiotemporal focal points, to be visited by each trajectory in a specific order. The general idea behind the generator is to use the focal points so as to attract each trajectory’s movement. When a particular trajectory has reached the area around a focal point, having at the same time completed the respective temporal predicate, the generation algorithm changes the attracting point to the next focal point in the list, and so on, until no focal points are left unvisited.

The idea of hiding sensitive locations of a trajectory by misplacing its route is illustrated in Figure 4. The algorithm discovers the intersection points of the trajectory with a circle that is formed around a sensitive location by taking as radius the distance between the sensitive location from a point where the object would have been moved after a certain period of time tw (i.e., tw is a temporal window), if it was moving with its current speed. The idea is to use these intersection points as the focal points in GSTD* (line 9) (see the filled gray circles in Figure 4). If the number of focal points is greater than two (i.e. the object enters and/or leaves the circle more than two times), the algorithm utilizes the first (entering) and the last (leaving) one. In case where the sensitive location is either the initial or the ending point causing the creation of only one focal point, the algorithm randomly selects another random focal point in the perimeter of the circle (line 10-11). After determining focal points it produces a synthetic (fake) trajectory by applying GSTD* between the two chosen focal points as illustrated in the figure with the dotted line (line 12). The algorithm returns the set of trajectories that does no longer contains sensitive locations (line 15).

Having protected the sensitive locations of the trajectories in the querying region, Algorithm 2 commands the generation of the necessary fake trajectories for this region (lines 12-22). To generate the requested number of fake trajectories, the algorithm calculates a set of basic statistics (line 12) that are needed by the fake trajectory generation approach (Algorithm 1), while trying to find trajectories that follow more or less the same direction in the query region (lines 13-21). Specifically, a step dirstep (in degrees) is randomly selected (line 14) in the range of \((0, \text{dir}_{\text{stepmax}}]\), with \(\text{dir}_{\text{stepmax}}\) being an input parameter that defines the size of an angular range used to divide the Cartesian plane. As illustrated in Figure 5, the algorithm selects those segments from the real trajectories that belong to the range \((\text{dir}_{\text{min}}, \text{dir}_{\text{max}}]\) (see the solid lines in the figure), which are set by randomly assigning \(\text{dir}_{\text{min}}\) and then setting \(\text{dir}_{\text{max}}\) equal to \(\text{dir}_{\text{min}} + \text{dir}_{\text{step}}\). Subsequently, it calls Algorithm 1 on these segments and passes the query window to create one new fake trajectory. The same process is repeated for the next range of directions, which leads to the generation of another fake trajectory, until the 360° are exceeded. Then, the algorithm selects a new \(\text{dir}_{\text{step}}\) and repeats the same process, until the requested number of fake trajectories is generated (line 22). Note that the filtering approach on the directional property of the segments guarantees that the fake generation algorithm will produce nice representative trajectories of the query result, as it acts as a simple clustering methodology on the overall set of available segments.

After generating the fake trajectories, Algorithm 2 takes the necessary measures to protect the privacy of the users whose movement is depicted in the query window by smoothly continuing the movement of the fake trajectories from neighboring regions, returned as part of previous queries posed by the end-user, to the current one. Specifically, the algorithm examines if the query posed by the end-user has a nearby query made by the same end-user in the past, which does not exceed a spatial s_{thr} and a temporal t_{thr} threshold. In case that the query has only one such neighbor, the algorithm performs a one-by-one matching (line 24) between the fake trajectories of MBB and MBB_{hist} (i.e. the nearby query saved in History). In detail, it first finds the MBB with the minimum number of fake trajectories and then it randomly matches each one of them with fakes from the other query, by producing pairs \(P_t\) of fake trajectories. For each pair, it examines if MBB touches MBB_{hist} or if they are apart. In the first case, illustrated in Figure 6, a space time translation is
Algorithm 2 Query Auditing Algorithm

1: function TRJAUDITOR(user’s query MBB, number of generated fake trajectories N, lower bound threshold \(s_{\text{thr}} \), temporal threshold \(t_{\text{thr}} \), maximum direction step \(d_{\text{step}} \), set of sensitive locations \(SL \), temporal window \(tw, MinLns, \gamma, \text{Timestep} \))
2: if CHECKHISTORY(User has posed an overlapping query w.r.t. MBB) = true then
3: Privacy threat: Overlapping queries
4: \(TR \leftarrow \text{SPATIOTEMPORAL RANGE QUERY(MBB)} \)
5: \(TR \leftarrow \text{HIDE SENSITIVE LOCATIONS(} SL, TR, MBB, tw \text{)} \)
6: if (CHECKHISTORY(User has posed in the past a nearby query w.r.t. \(s_{\text{thr}}, t_{\text{thr}} \)) = true) then
7: Privacy threat: Sequential tracking attack
8: else if \(|TR| \leq L \) then
9: Privacy threat: Lower bound threshold violation
10: end if
11: calculate statistics \((d_{\text{min}}, d_{\text{max}}, t_{\text{min}}, t_{\text{max}}, t_{\text{step}}, \text{avgG}_{\text{min}}, \text{avgG}_{\text{max}}) \)
12: repeat
13: \(\text{dir}_{\text{step}} \leftarrow \text{random}(0, d_{\text{step}}) \)
14: \(\text{dir}_{\text{min}} \leftarrow \text{random}(0, 360) \); \(\text{dir}_{\text{max}} \leftarrow \text{dir}_{\text{min}} + \text{dir}_{\text{step}} \)
15: repeat
16: \(S_i \leftarrow \text{FILTER BY DIRECTION(} \text{dir}_{\text{min}}, \text{dir}_{\text{max}}, TR \text{)} \)
17: \(FT \leftarrow \text{FAKE GEN(} S_i, \text{MinLns,} \gamma, \text{Timestep, MBB, Statistics} \text{)} \)
18: \(\text{dir}_{\text{min}} \leftarrow \text{dir}_{\text{min}} + \text{dir}_{\text{step}} \)
19: \(\text{dir}_{\text{max}} \leftarrow \text{dir}_{\text{max}} + \text{dir}_{\text{step}} \)
20: until \(\text{dir}_{\text{max}} > 360 \)
21: until \(|FT| = N \)
22: Retrieve from History all fakes \(FT_{\text{hist}} \) from a nearby query of the user w.r.t. \(s_{\text{thr}}, t_{\text{thr}} \)
23: \(P_{\text{matches}} \leftarrow \text{MINRANDOMMAX(} FT, FT_{\text{hist}} \text{)} \)
24: for each pair \(P(T_p, T_q) \in P_{\text{matches}} \) do
25: if (MBB touches a historic query of the user) then
26: \(\text{SPACE_TIME_TRANSLATION(} P_i \text{)} \)
27: else
28: \(f_{\text{local points}} \leftarrow \text{INTERSECTION(} T_p \text{buffer}(SL_{i,j}, tw) \text{)} \)
29: \(\text{GSTD}^* (f_{\text{local points}}) \)
30: Update in \(FT \) the fake trajectory that corresponds to \(P_i \)
31: \(FT \leftarrow \text{HIDE SENSITIVE LOCATIONS(} SL, FT, MBB, tw \text{)} \)
32: \(\text{UPDATE HISTORY} \)
33: return \((TR \cup FT) \)

Algorithm 3 Hide Sensitive Locations

1: function HIDE SENSITIVE LOCATIONS(set of sensitive locations \(SL \), set of trajectories \(T \), user’s query MBB, temporal window \(tw \))
2: \(SL \leftarrow SL \text{ inside MBB} \)
3: for each \((T_i \in T) \) do
4: \(SL_i \leftarrow \text{select the subset of} \ SL \text{ that correspond to} T_i \)
5: for each (sensitive location of \(T_{ij} \in SL_i \text{ do} \))
6: if (a fake sub-trajectory has been computed in the past for this \(SL_{ij} \)) then
7: Retrieve the fake sub-trajectory from History and update \(T_i \)
8: else
9: \(f_{\text{local points}} \leftarrow \text{INTERSECTION(} T_p \text{buffer}(SL_{ij}, tw) \text{)} \)
10: if \(|f_{\text{local points}}| = 1 \) then
11: \(f_{\text{local points}} \leftarrow \text{ADD RANDOM POINT ON SURFACE(} \text{buffer}(SL_{ij}, tw) \text{)} \)
12: Produce a synthetic/fake trajectory by applying \(\text{GSTD}^* \) between first and last \(f_{\text{local points}} \)
13: Update the part of \(T_i \) with the synthetic/fake sub-trajectory
14: \(\text{UPDATE HISTORY} \)
15: return \((T) \)

Figure 4: Protecting the sensitive locations of user trajectories

Figure 5: Selecting segments from real trajectories
performed to connect the two fake trajectories. The fake trajectory is transferred in the x and y axes, if necessary.

Then, the algorithm checks the time dimension to assure there is no temporal gap. If such a gap exists, the algorithm recalculates the timestamp of each point of the fake trajectory. In the second case (see Figure 7), where a spatial and/or a temporal gap exists between MBB and MBB_{hist}, Algorithm 2 generates a connection-trajectory (see the dotted lines) between them by using the GSTD* algorithm [24]. Focal points are the ending point of the one trajectory with the starting point of its matching trajectory in P_t. After generating the fake trajectories, the algorithm applies the hiding process of the sensitive locations also for these trajectories (line 32), to conceal the fact that they are fakes.

The trajectory auditing algorithm (i.e., TrajAuditor), as presented in Algorithm 2, covers the cases of range and distance queries. The same algorithm can be minimally adapted to support k-nearest neighbor queries. In the case of k-nearest neighbor queries, the end-user has to provide as parameters the value of k, the trajectory for which he or she searches its k nearest neighbors, and a temporal period which is a (sub)-period of the trajectory’s lifespan. Moreover, the MBB window in a k nearest neighbor query refers to the MBB of the trajectories that form the result of this query. Thus, to support such queries, Algorithm 2 has to be modified so that in lines 12 (17), where statistics (MBB parameter for Algorithm 1) for the generation of the fake trajectories are computed, the window will be the MBB of all real trajectories in the query result.

As a last remark, we need to point out that Algorithm 2 commands the generation of the necessary number of fake trajectories based on the parts of the real trajectories that appear inside the query window. An alternative approach (henceforth called TrajFaker) would be to generate wide fake trajectories that exceed the limits of the window the user submitted. In this case, auditing would still be applicable but not forced, contrary to the case of Algorithm 2. The alternative strategy differs from that of Algorithm 2 in the following steps. When a user executes a query, the new approach finds the trajectories that are contained in the specific spatiotemporal window (or the k nearest neighbors in case of such queries) and then retrieves the whole trajectories and not the parts of them that lie inside the window. Subsequently, it generates fake trajectories by employing Algorithm 1 on the whole trajectories. Each generated fake trajectory is examined to see whether it crosses the spatiotemporal window of the query and, if so, it is included to the returning set. Otherwise, the trajectory is discarded and the same process is repeated. All generated fake trajectories are stored in order to participate to the generation of other fake trajectories. Finally, there are no privacy threats with respect to sequential tracking as before, since the generated fake trajectories are based on the whole trajectories and not parts of them, and are stored. If an adversary tries to execute overlapping or sequential queries, the fakes will appear in all of these queries’ answers.

5. Private-HERMES: A Benchmark Framework for Privacy-Preserving Mobility Data Querying and Mining Methods

Although a variety of anonymization algorithms that enable the privacy-aware publishing of personal mobility data have been recently proposed in the literature (e.g. [1] [2]), no systemic approach has been taken so far to integrate these algorithms under a common, benchmark-oriented framework. Moreover, until recently, there was no extensible privacy-aware query engine.
proposed in the research literature that would be able to act as the counterpart of the anonymous data publishing approach, allowing the maintenance of the mobility data in-house and their privacy-protection through carefully designed auditing mechanisms. Along this direction, this paper also demonstrates Private-HERMES, a benchmark framework that gives end-users the ability to:

- **Querying and mining operations on HERMES**: The platform is capable of executing simple queries on HERMES, such as range and NN queries. Queries are posed via the GUI, which provides essential capabilities, including query predicate selection, parameters selection and results projection. Graphical map user-interaction for predicate definition is also supported. Moreover, there is extensive support for the most representative mobility data mining algorithms for clustering (T-Optics [14], CenTR-I-FCM [24], TRACLUS [12], K-medoids [11], Bisecting K-medoids [28]), frequent pattern mining (T-Patterns [7]) and sampling purposes (T-Sampling [25]).

- **Privacy-aware queries on HERMES++**: the user has the ability to run the aforementioned queries using HERMES++. HERMES++ is able to protect users whose movement is recorded in the database from privacy attacks, i.e. user identification attack, sensitive location attack and sequential tracking attack, issued by malevolent end-users. The data owner requires that at least a certain number of trajectories are returned to the end-users in response to their queries, for all different types of supported queries. The result consists of a set of carefully crafted, realistic fake trajectories aiming to preserve the trend of the original user trajectories.

- **Comparison / evaluation of anonymization algorithms**: the platform integrates two well-known anonymization algorithms, namely NWA [1] and W4M [2]. Both algorithms take as input trajectories which may have been extracted from a query posed to HERMES, and transform them into anonymous equivalents, subsequently stored in the MOD. An advantage of the platform is its ability to design and execute benchmarks that evaluate the results from the application of anonymization algorithms regarding the distortion over real user trajectories. The incorporated data mining techniques can be applied, and patterns steaming from original data with patterns resulting from anonymized data can be compared. This can be achieved by executing queries in the original and the anonymized data (or patterns), and comparing the results.

- **Profiling end-user’s behavior to identify malevolent users**: The platform supports query auditing techniques [8], which can be used to monitor the behavior of the end-users and build user profiles. These user profiles can be subsequently analyzed by the data owner, as explained in [8], to help him/her identify suspicious behavior of end-users in the system.

In Figures 8-11 are some representative snapshots of the Private-HERMES GUI. In Figure 8, original data have been extracted using a range query, while in Figure 9 the data have been anonymized using NWA. From these outputs, a user can compare the distortion that has been caused to the trajectory database after the application of the anonymization algorithm. In Figure 10, the result from the application of T-Optics [14] on the original data is depicted, while Figure 11 presents the result from applying T-Optics on the anonymized data. The extracted patterns can be visually compared.

6. SYSTEM IMPLEMENTATION

The main advantage of the Private-HERMES platform is that it offers users the ability to perform different processes on mobility

Figure 10: T-Optics applied on the original MOD

Figure 11: T-Optics applied on the Anonymized MOD

Figure 12: The Architecture of Private-HERMES

Figure 13: The Architecture of HERMES++
data, as shown in Figure 12. The user interacts with a GUI with 3D rendering capabilities developed in Java and based on the Swing GUI widget toolkit [18]. The results from the operations that the program supports are visualized in the 3D globe provided by NASA World Wind [15]. To draw the charts reporting performance results, the JFreeChart library was used [17]. Every component and library used during the development process is open source.

Through the provided GUI, the user is able to setup his/her benchmark or, more generally, his/her analysis scenario. Private-Hermes retrieves the necessary data by calling the HERMES MOD engine. The supported mobility data mining and anonymization algorithms have been incorporated as modules of the extensible DAEDALUS’s MO-DMQL [19], while both of these sets of algorithms exchange data (i.e. real / fake / anonymized trajectories and mining models) directly with the database layer.

Zooming in at the database layer, HERMES++ exploits on the trajectory storage functionality and the spatiotemporal query processing capabilities of HERMES for providing privacy-aware queries to end-users. More specifically, HERMES defines a trajectory data type and a collection of operations as an Oracle data cartridge, which is further enhanced by the TB-tree access method [26] for efficient querying on trajectory data. HERMES++ directly utilizes this functionality at the ORDBMS level to store real and fake trajectories, as well as any historical information of all the users’ queries (and the corresponding responses), in order to avoid different types of tracking attacks (e.g., sequential tracking). It succeeds so by the embedded auditing module, which invokes the HERMES queries and the fake trajectory generator algorithm. Since the entire framework is built at the ORDBMS level, end-users are also able to pose their queries through PL/SQL (i.e. not only via the GUI). As such, from an architectural point of view, HERMES++ acts as a wrapper over the HERMES query engine and not as a secure middleware. Figure 13 illustrates the HERMES++ architectural framework.

7. EXPERIMENTAL EVALUATION
In this section, we experimentally evaluate the proposed privacy-aware query engine to assess its effectiveness in protecting user privacy when answering queries. To evaluate the distortion that is caused by the query engine to the database due to the generation of fake trajectories, we consider that the data owner requires that at least \(K \) trajectories are returned to the end-users in response to their queries, for all different types of supported queries. Parameter \(K \) is similar to using a variable \(N \) threshold for the generation of fake trajectories: it’s purpose is to provide insight on the performance of the query engine when the number of generated fake trajectories is dynamically changing. To assess the efficiency of the proposed auditing methodology, we compute the time lag in the responses to the end-users’ queries. We report experiments over a synthetic dataset, which was generated using Brinkhoff’s network-based generator for moving objects [5]. The dataset contains 4495 trajectories, all living in a temporal period of 800 timestamps. A location update is performed in successive timestamps that are 5 minutes far from each other. The dataset has been generated over the road network of Oldenburg (Germany). It contains 153163 points, the radius area containing all trajectories is 17889.6, the maximum length of a trajectory is 668 and the average distance between consecutive points is 697.9.

For each query type that is supported by our query engine, we evaluated our methodology by measuring the database distortion that is defined as the percentage of the generated fake trajectories with respect to the size of the database. For each experiment, we created 1000 random queries. For range queries (and distance queries, which are handled as range queries with the distance threshold being the measure for determining the range size), we randomly selected different sizes, locations and time durations.
while for k nearest neighbor queries we randomly selected the query trajectory and the temporal period ((sub)-period of the query trajectory’s lifespan) for different values of k. For k nearest neighbor queries the corresponding MBB was set to $0.1 \ast d$, where d is the length of the maximum side of the MBB of the whole dataset. This implies that a trajectory is not included in the k nearest neighbor if its distance is greater than $0.1 \ast d$. We use this approach to exclude results sets that cover a disproportionally large MBB that will have as an effect the creation of many fakes. In all cases, we have set the MinLns parameter to 2, the γ smoothing parameter to 5m, and the Timestep to the sampling rate of the dataset.

Moreover, we have set the spatial (temporal) threshold s_{thr} (t_{thr}) to 0.001 $\ast d$, while the maximum direction step $dir_{step_{max}}$ was set to 45°.

Figure 14 illustrates the distortion of the database for spatiotemporal range queries for both proposed approaches. Specifically, the figure shows the percentage of the generated fake trajectories for different value-pairs of K and L. Note that we slightly increase the L bound analogously with the increase of the K threshold. Clearly, the overall distortion of the database even for large thresholds of K (w.r.t the size of the database) is very low. Moreover, the TrajAuditor results in less distortion for small values of K, while for larger values the relative rate of distortion w.r.t. TrajFaker is decreased. This is rational, as for larger K thresholds the TrajFaker will produce less fakes, but longer, which have been generated in preceding queries. Intuitively, the fakes are less in this case as the algorithm reuses parts of the long fakes produced by other queries.

In Figure 15 we repeat the same experiment for kNN queries but this time we keep the K threshold stable to 5 and scale the number of K nearest neighbors. As expected, again the results present the same pattern. In the sequel and due to space limitations, we omit further presentation regarding k nearest neighbor queries as they do not allow different conclusions from those of range queries.

Figures 16 and 17 show the distortion in the database for TrajAuditor and TrajFaker (respectively) at any given time. The distortion is plotted with respect to the users' queries (in temporal order, but still in random sizes and locations), for different values of K. As expected, lower values of K result in a smaller distortion of the database, since less fakes are generated. Furthermore, for any value of K the curve is increasing, however, for the case of TrajAuditor it is convex, which means that there is some time instance at which the fakes in the dataset suffice to answer a reasonable amount of user queries, without the need of generating additional fakes. On the other hand, in the case of so we respond to any user query by generating fakes. Despite this the distortion remains at low levels, lower than 5%, even for $K = 25$. The reason that the database distortion is low relies on the re-use of the fake trajectories across different users’ queries. An additional qualitative advantage of the TrajFaker is that fake trajectories in this case are more realistic, as they are produced by whole, real trajectories and not portions whose size depend on the query size.

Next, we conducted experiments over range queries of varying volumes (i.e. multiples of the whole space-time). The queries are clustered in ten equally sized groups. Each group contains randomly selected queries of the same volume. Figure 18 depicts the distortion in the database when applying randomly 1000 queries using TrajFaker. Notice the decrease in database distortion as the size of the queries increases. This is because large queries will not be forced to generate more fakes, since some of the fakes will have already been created by small queries that produce long fakes.

Figure 19 presents the number of query rejections (denials) of the TrajAuditor for different values of K, and L. The upward convex trend of the curves is due to the fact that as the volume of the queries increases it is more probable to lead to sequential tracking attacks. We note that larger K values result in less query rejections. This is justified by the simultaneous increase of the L bound. A larger lower bound L results in more query denials. More such rejections mean fewer MBBs to be stored in History, which means fewer rejections due to sequential tracking attacks.

Last, we study the efficiency of the auditing mechanism. Figure 20 presents the average time over all 1000 queries of how much does TrajAuditor (TrajFaker) delay the response to the user’s query. As expected, TrajAuditor presents larger time lags, while both approaches show a superlinear behavior due to the generation of fakes.
8. CONCLUSION
In this paper we presented HERMES++, a privacy-aware query engine that enables the remote analysis of user mobility data. HERMES++ supports a variety of popular spatial and spatiotemporal queries and uses auditing and fake trajectory generation techniques to identify and block, respectively, potential attacks to user privacy. Moreover, we presented Private-Hermes, an integrated platform for applying data mining and privacy-preserving querying over mobility data. Through experimental evaluation, we demonstrated the effectiveness of our approach to protect the privacy of the users, while minimally distorting the mobility dataset.

9. ACKNOWLEDGMENTS
Research partially supported by the EU FP7/ICT/FET Projects MODAP (Mobility, Data Mining and Privacy; 2009-12) and DATASIM (Data Science for Simulating the Era of Electric Vehicles; 2011-14), both funded by the European Union. The implementation of these algorithms and the experiments performed at the University of Piraeus.

10. REFERENCES