Extracting mobility behavior from cell phone data
DATA SIM Summer School 2013

PETER WIDHALM
Mobility Department
Dynamic Transportation Systems
T +43(0) 50550-6655 | F +43(0) 50550-6439
peter.widhalm@ait.ac.at | http://www.ait.ac.at

MARKUS PIFF
Mobility Department
Dynamic Transportation Systems
T +43(0) 50550-6021 | F +43(0) 50550-6439
markus.piff@ait.ac.at | http://www.ait.ac.at
AIT Austrian Institute of Technology
Research Focus

- EFFICIENT
- SAFE
- GREEN
Research Focus

- EFFICIENT
- SAFE
- GREEN

Dynamic Transportation Systems:
- Multimodal transport
- Traffic Flows
- Human Factors
- Data acquisition & analysis
- Simulation & optimization
Goals of our research

- Aid travel demand modeling by providing information about mobility behavior extracted from cell phone data
- Integrate with PTV VISUM
- Validate results
Background and Motivation

- Travel demand modeling
 - estimation of demand flows
 - **Demand flow**: aggregation of trips
 - from an origin (zone)
 - to a destination (zone)
 - within a time interval
 - using a specific mode of transport

→ OD matrices
Background and Motivation

- **Trips result from choices**
 - frequency and timing
 - destination
 - mode and route

 \[\rightarrow \text{System of submodels} \]
 (typically 4-step model)

- **In each step either**
 - **“snapshot“ of current situation or prior knowledge**
 - no model, no assumptions, no predictions
 - some sort of extrapolation
 - **prediction models**
 - behavior explained by socioeconomic attributes, activity and transport supply
 - e.g. Random Utility Models
Background and Motivation

- **Required data:**
 - *average number of trips per person for given origin and purpose*

- **Model assumption:**
 - Activity needs governed by socioeconomic attributes → behavioral groups w.r.t. trip purpose
 - Travel needs governed by activity supply

 → (observed) behavior (clusters) explained by socioeconomic attributes and attributes of trip origin
Background and Motivation

- Required data:
 - distribution of trips starting at given origin and with given purpose over destinations

- Model assumption:
 - Number of trips attracted by a destination is governed by
 - Costs to reach destination (from given origin): travel time, monetary costs, …
 - Activity supply of destination (w.r.t. given trip purpose)

 → (observed) behavior explained by supply attributes of trip destination and travel „costs“ between origin and destination
Background and Motivation

- Required data:
 - distribution of trips with given origin, purpose, destinations over modes of transport

- Model assumption:
 - Mode choice is governed by purpose, trip length, transportation supply and socioeconomic attributes (age, income, car ownership, …)
 - (observed) behavior explained by mode specific travel „costs“ (transport supply) and socioeconomic attributes (and mode specific „preference constants“)
Background and Motivation

- Required data:
 - level-of-service (travel times, delays) of route alternatives depending on flow volume

- Model assumption:
 - Route choice is governed by level-of-service (travel times, number of stops, monetary costs, …).
 - Level-of-service can depend on flow volumes (street networks)

 → (observed) behavior explained by level-of-service (→ Volume Delay functions)
Background and Motivation

- Required data:
 - Level of service (travel times, delays) of route alternatives depending on flow volume
- Model assumption:
 - Route choice is governed by level of service (travel times, number of stops, monetary costs, …).
 - Level of service can depend on flow volumes (street networks).
 - ▸ (observed) behavior explained by level-of-service (Volume Delay functions)
Background and Motivation

- **Traditional surveys**
 - expensive
 - limited sample size
 - no up-to-date data

- → **new technologically aided methods** are needed!
 - e.g.
 - GPS tracker
 - cell phones
Using cell phone data for travel surveys

Active techniques (GPS, sensor data)

- requires Smartphone app
- burden on participant
- costs
- → sample size still limited

Passive techniques (telecom network traffic)

- infrastructure already in place
- no recruiting required
- large sample size!
Cell phone data – Passive techniques

- **Call Detail Records (CDRs)**
 - billing data
 - better availability
 - depend on phone usage behavior

- **Cellular network protocol events**
 - better reconstruction of actual trajectory:
 - **motion-triggered records** (Location/Routing Area Updates)
 - whenever device crosses Location/Routing Area border
 - **time-triggered records** (periodic location updates, ~3 or 6 hours)
 - guaranteed minimum location update frequency
Approach – passive technique

- Reconstruction of stops and trips
 - inference of arrival / departure time (→ duration) + uncertainties
 - based on min. travel times
 - location clustering
 - location labels within day trajectory, e.g.: A-B-C-A-D-A
Approach – passive technique

- Stop patterns can be clustered to find daily mobility patterns: „Motifs“

Approach – passive technique

- Assign attributes to stops and trips

- earliest/latest arrival/departure
- min/max duration
- traffic zone
 - land use shares + POI categories
 - sociodemographics
- earliest/latest departure
- min/max duration
- distance / length
Approach – passive technique

- Inference of activities
 - based on
 - probability of activity pattern \(m = (a_{m,1}, ..., a_{m,n}) \)
 - prior \(p(m) \)
 - location sequence \(s \) \(p(s|m) \)
 - probability of activities \(a_{m,i} \)
 - time \(t_i \) \(p(t_i|a_{m,i}) \)
 - duration \(d_i \) \(p(d_i|a_{m,i}) \)
 - land use / POIs \(l_i \) \(p(l_i|a_{m,i}) \)

\[
p(m|s) = \frac{p(m)p(s|m)}{\sum_{m'\in M} p(s|m')p(m')}
\]

\[
p(a_{m,i}|t_i, d_i, l_i) = \frac{p(t_i|a_{m,i})p(d_i|a_{m,i})p(l_i|a_{m,i})}{\sum_{a'\in A} p(t_i|a')p(d_i|a')p(l_i|a')}
\]

\[
p(m|s, t, d, l) = p(m|s) \prod_i p(a_{m,i}|t_i, d_i, l_i)
\]
Approach – passive technique

- Inference of activities
 - based on
 - probability of activity pattern m
 - prior $p(m)$
 - location sequence s $p(s|m)$
 - probability of activities $a_{m,i}$
 - time t_i $p(t_i|a_{m,i})$
 - duration d_i $p(d_i|a_{m,i})$
 - land use / POIs l_i $p(l_i|a_{m,i})$

$$p(m|s) = \frac{p(m)p(s|m)}{\sum_{m' \in M} p(s|m')p(m')}$$

$$p(a_{m,i}|t_i, d_i, l_i) = \frac{p(t_i|a_{m,i})p(d_i|a_{m,i})p(l_i|a_{m,i})}{\sum_{a' \in A} p(t_i|a')p(d_i|a')p(l_i|a')}$$

$$p(m|s, t, d, l) = p(m|s) \prod_{i} p(a_{m,i}|t_i, d_i, l_i)$$

- frequency of activity patterns, e.g.
 - Home-Work-Home 18.6%
 - Home-Leisure-Home 11.4%
 - Home-Shop-Home 11.0%
 - Home-Work-Shop-Home 1.0%
Approach – passive technique

- Inference of activities
 - based on
 - probability of activity pattern
 - prior
 - location sequence s
 - probability of activities $a_{m,i}$
 » time t_i
 » duration d_i
 » land use / POIs l_i

\[
p(m|s) = \frac{p(m)p(s|m)}{\sum_{m' \in M} p(s|m')p(m')}
\]

\[
p(a_{m,i}|t_i, d_i, l_i) = \frac{p(t_i|a_{m,i})p(d_i|a_{m,i})p(l_i|a_{m,i})}{\sum_{a' \in A} p(t_i|a')p(d_i|a')p(l_i|a')}
\]

\[
p(m|s, t, d, l) = p(m|s) \prod_{i} p(a_{m,i}|t_i, d_i, l_i)
\]

A-B-C-$A \neq \text{Home-Work-Home}$

$\approx \text{Home-Work-Shop-Home}$

$\approx \text{Home-Leisure-Leisure-Home}$
Approach – passive technique

- Inference of activities
 - based on
 - probability of activity m_i pattern
 - prior $p(m)$
 - location sequence s
 - probability of activities $a_{m,i}$
 » time t_i $p(t_i|a_{m,i})$
 » duration d_i $p(d_i|a_{m,i})$
 » land use / POIs l_i $p(l_i|a_{m,i})$

\[
p(m|s) = \frac{p(m)p(s|m)}{\sum_{m' \in M} p(s|m')p(m')}
\]

\[
p(a_{m,i}|t_i, d_i, l_i) = \frac{p(t_i|a_{m,i})p(d_i|a_{m,i})p(l_i|a_{m,i})}{\sum_{a' \in A} p(t_i|a')p(d_i|a')p(l_i|a')}
\]

\[
p(m|s, t, d, l) = p(m|s) \prod_{i} p(a_{m,i}|t_i, d_i, l_i)
\]
Approach – passive

- Inference of activities
 - based on
 - probability of activity pattern
 - prior
 - location sequence
 - probability of activities
 - time
 - duration
 - land use / POIs
 - \(p(l_i|a_{m,i}) \)

\[
p(m|s) = \frac{p(m)p(s|m)}{\sum_{m' \in M} p(s|m')p(m')}
\]

\[
p(a_{m,i}|t_i, d_i, l_i) = \frac{p(t_i|a_{m,i})p(d_i|a_{m,i})p(l_i|a_{m,i})}{\sum_{a' \in A} p(t_i|a')p(d_i|a')p(l_i|a')}
\]

\[
p(m|s, t, d, l) = p(m|s) \prod_i p(a_{m,i}|t_i, d_i, l_i)
\]
Approach – passive technique

- Inference of activities
 - based on
 - probability of activity pattern \(m = (a_{m,1}, \ldots, a_{m,n}) \)
 - prior \(p(m) \)
 - location sequence \(s \) \(p(s|m) \)
 - probability of activities \(a_{m,i} \)
 - time \(t_i \) \(p(t_i|a_{m,i}) \)
 - duration \(d_i \) \(p(d_i|a_{m,i}) \)
 - land use / POIs \(l_i \) \(p(l_i|a_{m,i}) \)

\[
p(m|s) = \frac{p(m)p(s|m)}{\sum_{m' \in M} p(s|m')p(m')}
\]

\[
p(a_{m,i}|t_i, d_i, l_i) = \frac{p(t_i|a_{m,i})p(d_i|a_{m,i})p(l_i|a_{m,i})}{\sum_{a' \in A} p(t_i|a')p(d_i|a')p(l_i|a')}
\]

\[
p(m|s, t, d, l) = p(m|s) \prod_i p(a_{m,i}|t_i, d_i, l_i)
\]
Approach – passive technique

- Inference of activities

 - **iterative EM-like clustering**
 - alternation of probabilistic assignment and parameter update

 - **initialization:** prior beliefs
 - previous surveys
 - active surveys with small sample size
 - literature
 - „rule-of-thumb“
Estimation of Travel Demand Flows (OD matrices)

- Simple approach: “snapshot” of current demand flows
 - Infer home location
 - Extrapolate number of OD-trips with known average number of trips produced in home location (based on number of residents and trip frequency) and known modal share
 - Implicit assumption: residents in same traffic zone have similar travel behavior

Estimation of Travel Demand Flows (OD matrices)

Validation – passive technique

- Comparison of **travel times** and **flow volumes** in the street network

measurements:

- Floating Car Data
- Traffic Detectors

model output:

Floating Car Data

Traffic Detectors
Validation – passive technique

- Comparison of **trajectories**, **trips**, **stops**, **activities**

Network Traffic

passive

active

Smartphone App:
- GPS track
- annotated activities
Approach – active technique

- Mode & path choice:

Approach – active technique

- Mode & path choice:

 Random subspace classifier ensemble

 $$\sum \text{averaged posterior class probabilities}$$

 HMM

Validation:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Recall</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Car</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Bike</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Tram</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Train</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Subway</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Walk</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Motorcycle</td>
<td>0.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>

8:00 am
8:12 am
8:24 am
8:29 am
Summary

Network Traffic

passive

active

Smartphone App

![Graph showing trips and modes]

Trip Production → Trip Distribution → Mode Choice → Route Assignment

8:00 am
8:12 am
8:24 am
8:29 am
Extracting mobility behavior from cell phone data
DATA SIM Summer School 2013

PETER WIDHALM
Mobility Department
Dynamic Transportation Systems
T +43(0) 50550-6655 | F +43(0) 50550-6439
peter.widhalm@ait.ac.at | http://www.ait.ac.at

MARKUS PIFF
Mobility Department
Dynamic Transportation Systems
T +43(0) 50550-6021 | F +43(0) 50550-6439
markus.piff@ait.ac.at | http://www.ait.ac.at