Introduction into challenges and approaches in behavioral freight demand modelling

Michael Zilske (TU Berlin), Gernot Liedtke (Karlsruher Institut für Technologie)
Agenda

• 4-step process in passenger transport modelling
• Particularities of freight transport
• 9-step process in freight transport modelling
• Decision-based freight modeling framework

• Freight carrier model integrated with traffic flow simulation
• Case study on food retailers
Standard method for passenger transport planning:

- Trip generation (sources and sinks of traffic)
- Destination choice (connection of sources and sinks)
- Mode choice
- Traffic assignment (route choice considering congestion)
Trip generation
Destination choice
Mode choice
Network assignment
Trip generation
Destination choice
Mode choice
Route choice
Dynamic network loading
Passenger vs. freight transport

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Passenger transport</th>
<th>Freight transport</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cause of transport</td>
<td>Time-space shifting between activities, which satisfy human needs</td>
<td>Provisioning & distributing for assuring the companies’ functioning</td>
</tr>
<tr>
<td>Microscopic flow of the moved objects</td>
<td>cycles</td>
<td>not cycles</td>
</tr>
<tr>
<td>Microscopic flow of vehicles</td>
<td>cycles</td>
<td>cycles</td>
</tr>
</tbody>
</table>
Passenger vs. freight transport

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Passenger transport</th>
<th>Freight transport</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actors</td>
<td>Households and persons transport companies</td>
<td>buyers, shippers, carriers and forwarders</td>
</tr>
<tr>
<td>Optimization criteria</td>
<td>Utility of whole-day activity structure</td>
<td>Cost, customer satisfaction</td>
</tr>
</tbody>
</table>
Passenger vs. freight transport

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Passenger transport</th>
<th>Freight transport</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication and co-ordination</td>
<td>Within households</td>
<td>Trade within business networks between different actors</td>
</tr>
<tr>
<td>Archetypes</td>
<td>Typical people (“workers”, “non-workers”, ...)</td>
<td>Large diversity (economic activity, logistics activity, size)</td>
</tr>
</tbody>
</table>
Passenger vs. Freight Transport

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Passenger transport</th>
<th>Freight transport</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time-space structure</td>
<td>Activity scheduling with limited time budget</td>
<td>Time-window structure, vehicle dispatching</td>
</tr>
<tr>
<td>Activity</td>
<td>Time consuming process at a specific location</td>
<td>Actions of forwarding freight, decisions concerning transport and logistics operations</td>
</tr>
</tbody>
</table>
| **Nature of constraints** | a) Physical limits of human beings
b) Limited budget
c) Limited resources (car availability) | a) Properties of the goods,
b) Legislation (such as limited behind-wheel time)
c) Coordination institutions (such as time-windows or time-tables)
d) Limited resources |
| **Routines** | Occurrence of patterns (e.g. of a regular working day) | Relevance of contracts, optimized regular working processes, e.g. a regular tour |
$P_i^g = \beta^g \cdot B_i^g$

- P: commodity production [t]
- B^g: employees in the sector generating commodity g
- β: generation rate [t/employee]
\[P_i^g = \frac{\tilde{P}_i^g}{\rho^g} \]

\(\rho \): value density [EUR/t]
\[
\Phi_{ij}^g = P_i^g \frac{C_j \cdot f(c_{ij})}{\sum_k C_k \cdot f(c_{ik})}
\]

C: commodity attraction (consumption)
f: deterrence function
c: generalised Transport cost
$$\Phi_{ij}^{gm} = \Phi_{ij}^{g} \frac{\exp(-\mu^g \cdot c_{ij}^{gm})}{\sum_{n} \exp(-\mu^g \cdot c_{ij}^{gn})}$$

m/n: modes
μ: homogeneity parameter
c: generalised transport cost
Value-weight-transformation

\[
\Phi_{ij}^{gl} = a_l \Phi_{ij}^g \quad a_i: \text{share of lot size } l \quad a_1 + a_2 + \ldots = 1
\]

\[
\Phi_{ij}^{glm} = \Phi_{ij}^{gl} \frac{\exp\left(-\mu^{gl} \cdot c_{ij}^{gm}\right)}{\sum_{n} \exp\left(-\mu^{gl} \cdot c_{ij}^{gn}\right)}
\]

Generation

Value-weight-transformation

Distribution

Lot size

Mode split

Assignment

<table>
<thead>
<tr>
<th>Lot size</th>
<th>0-2 t</th>
<th>2-5 t</th>
<th>5-15 t</th>
<th>.....</th>
</tr>
</thead>
</table>

Least-cost path search

- Generation
- Value-weight-transformation
- Distribution
- Lot size
- Mode split
- Assignment
Trip construction

Value-weight-transformation

Distribution

Lot size distribution

Mode split

Trip construction

Assignment

Empty runs, loading rate
Recapitulation: 4-Step process in freight transport

- Similar to passenger transport
- Robust methods
- Additional computation steps:
 - values → weight
 - weight → shipments
 - shipments → trips
Distribution on logistics and transport chains represent additional steps
Additional transformation steps

- values to weight
- weight to shipments
- shipments to vehicles

Distribution of flows on logistics and/or transport chains

Difficulties

- Several types of decision makers
- Mismatch between decisions and process-steps
- Logistics network shortest path search = logistics decision?
Sources for the following part

Schröder, S. & Liedtke, G.
Modeling and analyzing the effects of differentiated urban freight measures -- a case study of the food retailing industry
Transportation Research Board, 2014

Schröder, S.; Zilske, M.; Liedtke, G. & Nagel, K.
A computational framework for a multi-agent simulation of freight transport activities
Transportation Research Board, 2011
From aggregate multi-step modelling to behavior-modelling

- Generation
- Weight-value transf.
- Regional distribution
- Distr. Log. chains
- Distr. Lot size
- Distrib. Transp. chains
- Mode split
- Trip construction

- Economic Activity
 - Internal coordination
- Purchase and Sale
 - Internal coordination
- Logistics Planning
 - Market-based coordination
- Transport Network Planning
 - Market-based coordination
- Vehicle Tour Construction
 - Internal coordination
- Route Choice
From aggregate multi-step modelling to behavior-modelling

- Generation
- Weight-value transf.
- Regional distribution
- Distr. Log. chains
- Distr. Lot size
- Distrib. Transp. chains
- Mode split
- Trip construction
- Assignment

Economic Activity
 - Internal coordination
Purchase and Sale
 - Internal coordination
Logistics Planning
 - Market-based coordination
Transport Network Planning
 - Market-based coordination
Vehicle Tour Construction
 - Internal coordination
Route Choice

Dynamic network loading
Freight activity simulation
Decision problems and complexity

Logistics network planning / Shortest path search in logistics network graph
Lot-size choice
Mode choice
Transport network planning / Shortest path search in transport network graph
Vehicle routing
Route search

- hard problems, heuristic approximation necessary in all practical cases
- for each shipment: shortest path search in a network of up to about 10^6 edges
- low constant computation time per O/D-pair or shipment
Effects of policy decisions on urban freight traffic

Introduce timed congestion toll for heavy vehicles from 7am to 7 pm.

What would happen?

• carriers avoid toll time
• carriers avoid toll area
• carriers avoid heavy vehicles
• shippers change shipping policy
• long-term effects on urban development
Carrier agents decide on:
- Vehicle fleet (by type)
- Allocation of customers to depots
- Tour planning
- Departure times
- Routes through the road network

To minimize total cost:

$$\min\left[C_{\text{Fixed}} + C_{\text{Variable}}\right]$$
Implementation

Vehicle Routing

- Ruin-and-Recreate principle (Schrimpf et al., 2000)
 - Take a feasible solution
 - Remove some activities
 - Sequentially reinsert them «at cheapest point». Assignment of fixed-cost evolves over insertions. (Dell’Amico et al, 2007)
- Implemented in Java, reusable! (https://github.com/jsprit/jsprit)

Schrimpf et al. (2000)
Initial plan → Execution → Scoring → Analysis

- Replanning
 - Vehicle tour construction
 - Route choice
Initial plan → Execution → Scoring → Replanning

Vehicle tour construction
Route choice

Mode choice
Activity time choice
Route choice

freight

passengers
Policy scenarios

For heavy vehicles within the policy area:

1. **Cordon toll** (20€ per day per vehicle)
2. **Distance toll** (1€ per km)
3. **Prohibition**
4. **Night-time prohibition** (22h-7h).
Policy scenarios

For heavy vehicles within the policy area:

1. **Cordon toll** (20€ per day per vehicle)
2. **Distance toll** (1€ per km)
3. **Prohibition**
4. **Night-time prohibition** (22h-7h).
Results

Cordon toll
Reduced access to toll zone
Slight increase in total mileage

Distance toll
Further reduced mileage in toll zone
Results

Prohibition
Increase in total mileage

Night-time prohibition
Serve outer locations first
Shift to light vehicles
Results

Behavioral simulation is policy-sensitive in a plausible way: The taxed behavior is suppressed.

Policy in environmental zone has plausible side-effects outside the environmental zone.

Behavioral reaction which prompts extension of the model: Carriers want to move their hubs.
Limitations of results

Tours are on average too short and too fast compared to experience. How to calibrate?
Limitations of results

Tours are on average too short and too fast compared to experience. How to calibrate?
Summary & Conclusion

Behavioral freight model + traffic microsimulation: Plausible reactions in several choice dimensions to fine-grained urban policy measures

Freight operations model hard to calibrate: Need realistic tour planning

Next steps: (Realistic) transport market
Next after that: (Realistic) logistics network planning

This is open-source, you can download it, and it is runnable (bring your own data (shipments, depot positions))

www.matsim.org