Logo UHasselt


Computational Mathematics

Computational Mathematics

Logo UHasselt Universiteit Hasselt - Knowledge in action


Computational Mathematics Preprints, 2020

UP-20-04: C. Cances, J. Droniou, C. Guichard, G. Manzini, M. Bastidas Olivares, I.S. Pop, Error estimates for the gradient discretisation of degenerate parabolic equation of porous medium type

UP-20-03: S.B. Lunowa, I.S. Pop, and B. Koren, Linearization and Domain Decomposition Methods for Two-Phase Flow in Porous Media Involving Dynamic Capillarity and Hysteresis

UP-20-02: M. Bastidas, C. Bringedal, I.S. Pop, Numerical simulation of a phase-field model for reactive transport in porous media

UP-20-01: S. Sharmin, C. Bringedal, I.S. Pop, Upscaled models for two-phase flow in porous media with evolving interfaces at the pore scale

Computational Mathematics Preprints, 2019

UP-19-17: C. Bringedal, A conservative phase-field model for reactive transport

UP-19-16: D. Landa-Marbàn, G. Bødtker, B.F. Vik, P. Pettersson, I.S. Pop, K. Kumar, F.A. Radu, Mathematical Modeling, Laboratory Experiments, and Sensitivity Analysis of Bioplug Technology at Darcy Scale

UP-19-15: D. Illiano, I.S. Pop, and F.A. Radu, An efficient numerical scheme for fully coupled flow and reactive transport in variably saturated porous media including dynamic capillary effects

UP-19-14: S.B. Lunowa, I.S. Pop, and B. Koren, A Linear Domain Decomposition Method for Non-Equilibrium Two-Phase Flow Models

UP-19-13: C. Engwer, I.S. Pop, T. Wick, Dynamic and weighted stabilizations of the L-scheme applied to a phase-field model for fracture propagation

UP-19-12: M. Gahn, Singular limit for quasi-linear diffusive transport through a thin heterogeneous layer

UP-19-11: M. Gahn, W. Jäger and M. Neuss-Radu, Correctors and error estimates for
reaction-diffusion processes through thin heterogeneous layers in case of homogenized equations with interface diffusion

UP-19-10: Václav Kučera, Mária Lukáčová-Medvid’ová, Sebastian Noelle and Jochen Schütz, Asymptotic properties of a class of linearly implicit schemes for weakly compressible Euler equations

UP-19-09: Jochen Schütz and David Seal, An asymptotic preserving semi-implicit multiderivative solver

UP-19-08: H. Hajibeygi, M. Bastidas Olivares, M. HosseiniMehr, I.S. Pop, M.F. Wheeler, A benchmark study of the multiscale and homogenization methods for fully implicit multiphase ow simulations with adaptive dynamic mesh (ADM)

UP-19-07: J.W. Both, I.S. Pop, I. Yotov, Global existence of a weak solution to unsaturated poroelasticity

UP-19-06: K. Mitra, T. Koppl, I.S. Pop, C.J. van Duijn, R. Helmig, Fronts in two-phase porous flow problems: effects of hysteresis and dynamic capillarity

UP-19-05: D. Illiano, I.S. Pop, F.A. Radu, Iterative schemes for surfactant transport in porous media

UP-19-04: M. Bastidas, C. Bringedal, I.S. Pop, F.A. Radu, Adaptive numerical homogenization of nonlinear diffusion problems

UP-19-03: K. Kumar, F. List, I.S. Pop, F.A. Radu, Formal upscaling and numerical validation of fractured flow models for Richards' equation

UP-19-02: M.A. Endo Kokubun, A. Muntean, F.A. Radu, K. Kumar, I.S. Pop, E. Keilegavlen, K. Spildo, A pore-scale study of transport of inertial particles by water in porous media

UP-19-01: Carina Bringedal, Lars von Wolff, Iuliu Sorin Pop, Phase field modeling of precipitation and dissolution processes in porous media: Upscaling and numerical experiments

Ph. D. Theses

Koondanibha Mitra, Mathematical Complexities in Porous Media Flow, Hasselt University, Faculty of Sciences, September 2019

Computational Mathematics Preprints, 2018

UP-18-09 David Landa-Marbán, Gunhild Bødtker, Kundan Kumar, Iuliu Sorin Pop, Florin Adrian Radu, An upscaled model for permeable biofilm in a thin channel and tube

UP-18-08: Vo Anh Khoa, Le Thi Phuong Ngoc, Nguyen Thanh Long, Existence, blow-up and exponential decay of solutions for a porous-elastic system with damping and source terms

UP-18-07: Vo Anh Khoa, Tran The Hung, Daniel Lesnic, Uniqueness result for an age-dependent reaction-diffusion problem

UP-18-06: Koondanibha Mitra, Iuliu Sorin Pop, A modified L-Scheme to solve nonlinear diffusion problems

UP-18-05: David Landa-Marban, Na Liu, Iuliu Sorin Pop, Kundan Kumar, Per Pettersson, Gunhild Bodtker, Tormod Skauge, and Florin A. Radu, A pore-scale model for permeable biofilm: numerical simulations and laboratory experiments

UP-18-04: Florian List, Kundan Kumar, Iuliu Sorin Pop and Florin A. Radu, Rigorous upscaling of unsaturated flow in fractured porous media

UP-18-03: Koondanibha Mitra and Hans van Duijn, Wetting fronts in unsaturated porous media: the combined case of hysteresis and dynamic capillary

UP-18-02: Xiulei Cao and Koondanibha Mitra, Error estimates for a mixed finite element discretization of a two-phase porous media flow model with dynamic capillarity

UP-18-01: Klaus Kaiser, Jonas Zeifang, Jochen Schütz, Andrea Beck and Claus-Dieter Munz, Comparison of different splitting techniques for the isentropic Euler equations

Ph. D. Theses

Alexander Jaust, Novel implicit unconditionally stable time-stepping for DG-type methods and related topics, Hasselt University, Faculty of Sciences, October 2018
Klaus Kaiser, A high order discretization technique for singularly perturbed differential equations, Hasselt University, Faculty of Sciences, September 2018

Computational Mathematics Preprints, 2017

UP-17-11: Jakub Wiktor Both, Kundan Kumar, Jan Martin Nordbotten, Iuliu Sorin Pop, Florin Adrian Radu, Linear iterative schemes for doubly degenerate parabolic equations

UP-17-10: Carina Bringedal, Kundan Kumar, Effective behavior near clogging in upscaled equations for non-isothermal reactive porous media flow

UP-17-09: Alexander Jaust, Balthasar Reuter, Vadym Aizinger, Jochen Schütz and Peter Knabner, FESTUNG: A MATLAB / GNU Octave toolbox for the discontinuous Galerkin method. Part III: Hybridized discontinuous Galerkin (HDG) formulation

UP-17-08: David Seus, Koondanibha Mitra, Iuliu Sorin Pop, Florin Adrian Radu and Christian Rohde, A linear domain decomposition method for partially saturated flow in porous media

UP-17-07: Klaus Kaiser and Jochen Schütz, Asymptotic error analysis of an IMEX Runge-Kutta method

UP-17-06: Hans van Duijn, Koondanibha Mitra and Iuliu Sorin Pop, Travelling wave solutions for the Richards equation incorporating non-equilibrium effects in the capillarity pressure

UP-17-05: Hans van Duijn and Koondanibha Mitra, Hysteresis and Horizontal Redistribution in Porous Media

UP-17-04: Jonas Zeifang, Klaus Kaiser, Andrea Beck, Jochen Schütz and Claus-Dieter Munz, Efficient high-order discontinuous Galerkin computations of low Mach number flows

UP-17-03: M.M. Bosschaert, S.G. Janssens, and Yu.A. Kuznetsov, Switching to nonhyperbolic cycles from codim-2 bifurcations of equilibria in DDEs

UP-17-02: Jochen Schütz, David C. Seal and Alexander Jaust, Implicit multiderivative collocation solvers for linear partial differential equations with discontinuous Galerkin spatial discretizations

UP-17-01: Alexander Jaust and Jochen Schütz, General linear methods for time-dependent PDEs

Ph. D. Theses

Stefan Karpinski, Numerical analysis of an interior penalty discontinuous Galerkin scheme for two phase flow in heterogeneous porous media with discontinuous dynamic capillary pressure effects, Hasselt University, Faculty of Sciences, May 2017

Computational Mathematics Preprints, 2016

UP-16-06: Klaus Kaiser and Jochen Schütz, A high-order method for weakly compressible flows

UP-16-05: Stefan Karpinski, Iuliu Sorin Pop, Florin A. Radu, Analysis of a linearization scheme for an interior penalty discontinuous Galerkin method for two phase flow in porous media with dynamic capillarity effects

UP-16-04: Florin A. Radu, Kundan Kumar, Jan Martin Nordbotten, Iuliu Sorin Pop, A robust, mass conservative scheme for two-phase flow in porous media including Hölder continuous nonlinearities

UP-16-03: Sergey Alyaev, Eirik Keilegavlen, Jan Martin Nordbotten, Iuliu Sorin Pop, Fractal structures in freezing brine

UP-16-02: Klaus Kaiser, Jochen Schütz, Ruth Schöbel and Sebastian Noelle, A new stable splitting for the isentropic Euler equations

UP-16-01: Jochen Schütz and Vadym Aizinger, A hierarchical scale separation approach for the hybridized discontinuous Galerkin method