Logo UHasselt

menu

Computational Mathematics


Computational Mathematics

Logo UHasselt Universiteit Hasselt - Knowledge in action

JONAS ZEIFANG

 

 

Dr. Jonas Zeifang

Vakgroep Wiskunde en Statistiek
Universiteit Hasselt

e-mail: jonas.zeifang@uhasselt.be

High order discontinuous Galerkin spectral element method methods for flow simulations:

  • Implicit and mixed implicit-explicit time discretization
  • Compressible multiphase simulations with the level set ghost fluid method
  • Efficient schemes for low Mach number flows
2021-...: Postdoctoral fellowship of the German Research Foundation at the Universiteit Hasselt
2017-2020: Doctoral studies at the Institute of Aerodynamics and Gas Dynamics, University of Stuttgart
2012-2015: Study of Aerospace Engineering (B.Sc./M.Sc.) at the University of Stuttgart
  1. J. Zeifang and J. Schütz, Two-derivative deferred correction time discretization for the discontinuous Galerkin method, CMAT Preprint UP-21-08 (submitted) [PDF]
  2. J. Schütz, D. Seal and J. Zeifang “Parallel-in-time high-order multiderivative IMEX methods”. In: CMAT Preprint UP-21-01 (submitted).
  3.  J. Zeifang, A. Beck “A data-driven high order sub-cell artificial viscosity for the discontinuous Galerkin spectral element method”. In: RG Preprint DOI: 10.13140/RG.2.2.26934.32322/1 (2021, submitted).
  4. J. Zeifang, A. Beck “A low Mach number IMEX flux splitting for the level set ghost fluid method”. In: RG Preprint DOI: 10.13140/RG.2.2.25427.40480 (2020, submitted).
  5. A. Beck, M. Gao, D. Kempf, P. Kopper, N. Krais, M. Kurz, J. Zeifang, C.-D. Munz “Increasing the flexibility of the high order discontinuous Galerkin framework FLEXI towards large scale industrial applications”. In: High Performance Computing in Science and Engineering’20, accepted for publication, 2020.
  6. J. Zeifang “A discontinuous Galerkin method for droplet dynamics in weakly compressible flows”. Ph.D. thesis, University of Stuttgart (2020)
  7. A. Beck, J. Zeifang, A. Schwarz, D. Flad ”A neural network-based shock localization approach for high order methods”. In: Journal of Computational Physics 423 (2020), 109824.
  8. S. Jöns, C. Müller, J. Zeifang, C.-D. Munz ”Recent advances and complex applications of the level-set ghost fluid method”. In: SEMA SIMAI Springer Series, accepted for publication, 2020.
  9. F. Föll, C. Müller, J. Zeifang, C.-D. Munz ”A novel regularization strategy for the local discontinuous Galerkin method for level-set reinitialization”. In: arXiv preprint arXiv:2007.06883 (submitted, 2020).
  10. J. Zeifang, J. Schütz, K. Kaiser, A. Beck, M. Lukácová-Medvid’ová, S. Noelle ”A novel full-Euler low Mach number IMEX splitting”. In: Communications in Computational Physics 27 (2020), pp. 292-320.
  11. J. Zeifang, K. Kaiser, J. Schütz, F.C. Massa, A. Beck ”An investigation of different splitting techniques for the isentropic Euler equations”. In: Droplet Interaction and Spray Processes. Ed. by G. Lamanna, S. Tonini, G.E. Cossali, and B. Weigand. Heidelberg, Berlin: Springer, 2020.
  12. C. Müller, T. Hitz, S. Jöns, J. Zeifang, S. Chiocchetti, C.-D. Munz ”Improvement of the level-set ghost-fluid method for the compressible Euler equations”. In: Droplet Interaction and Spray Processes. Ed. by G. Lamanna, S. Tonini, G.E. Cossali, and B. Weigand. Heidelberg, Berlin: Springer, 2020.
  13. A. Beck, T. Bolemann, D. Flad, N. Krais, J. Zeifang, C.-D. Munz ”Application and development of the high order discontinuous Galerkin spectral element method for compressible multiscale flows”. In: High Performance Computing in Science and Engineering’18. Springer, 2019, pp. 291-307.
  14. K. Kaiser, J. Zeifang, J. Schütz, A. Beck, C.-D. Munz "Comparison of different splitting techniques for the isentropic Euler equations." IGPM Preprint 476 (2018).
  15. J. Zeifang, K. Kaiser, A. Beck, J. Schütz, C.-D. Munz ”Efficient high-order discontinuous Galerkin computations of low Mach number flows”. In: Communications in Applied Mathematics and Computational Science, 13.2 (2018), pp. 243-270.