Logo UHasselt

menu

Computational Mathematics


Computational Mathematics

Logo UHasselt Universiteit Hasselt - Knowledge in action

KOONDANIBHA MITRA

Koondanibha Mitra, M.Sc.

Hasselt University
Faculty of Sciences
Discipline group Mathematics and statistics
Research group Computational mathematics

also affiliated with:

Eindhoven University of Technology (The Netherlands)
Faculty of Mathematics and Computer Science
Centre for Analysis, Scientific computing and Applications


Partial differential equations:

  • Analysis: Existence, uniqueness of weak solutions, travelling waves
  • Numerical methods: discretization (FEM/MFEM, finite volumes), convergence, linearization schemes, domain decomposition
  • Applications in porous media flows: unsaturated, two-phase, non-standard models, dynamic capillarity, hysteresis

List of publications

Refereed journal publications:

  1. Traveling wave solutions for the Richards equation with hysteresis, IMA J. Appl. Math. (accepted), with E. El Behi-Gornostaeva and B. Schweizer. 
  2. Wetting fronts in unsaturated porous media: the combined case of hysteresis and dynamic capillary, Nolinear Anal. Real World Appl. Vol. 50 (2019), pp. 316-341, with C.J. van Duijn (see also CMAT Report UP-18-03, Hasselt University). 
  3. Error estimates for a mixed finite element discretization of a two-phase porous media flow model with dynamic capillarityJ. Comput. Appl. Math. Vol. 353 (2019), pp. 164-178, with X. Cao (also see CMAT Report UP-18-02, Hasselt University). 
  4. A modified L-Scheme to solve nonlinear diffusion problemsComput. Math. Appl. Vol. 77 (2019), pp. 1722-1738, with I.S.. Pop (also see CMAT Report UP-18-06, Hasselt University).
  5. Hysteresis and Horizontal Redistribution in Porous Media,  Transp. Porous Med. Vol. 122 (2018), pp. 375–399, with C.J. van Duijn (also see CMAT Report UP-17-05, Hasselt University).
  6. A linear domain decomposition method for partially saturated flow in porous media, Comput. Methods Appl. Mech. Eng.  Vol. 333 (2018), pp. 331-355 with D. Seus, I.S. Pop, F.A. Radu and C. Rohde (also see CMAT Report UP-17-08, Hasselt University). 
  7. Travelling wave solutions for the Richards equation incorporating non-equilibrium effects in the capillarity pressureNolinear Anal. Real World Appl. Vol. 41 (2018), pp. 232–268, with C.J. van Duijn and I.S. Pop (also see Hasselt University, CMAT Report UP-17-06, Hasselt University). 

Reports:

Hasselt University, CMAT Reports

  1. Fronts in two-phase porous flow problems: effects of hysteresis and dynamic capillarity, CMAT Report UP-19-06, Hasselt University, with T. Koppl, I.S. Pop, C.J. van Duijn, R. Helmig,