
An explicitness-preserving IMEX-split
multiderivative method

E. Theodosiou, J. Schütz and D. C. Seal

UHasselt Computational Mathematics Preprint Nr. UP-23-01

January 25th, 2023

An explicitness-preserving IMEX-split multiderivative

method

Eleni Theodosiou a, Jochen Schütz a, David Seal

aFaculty of Sciences & Data Science Institute,
Hasselt University, Agoralaan Gebouw D, Diepenbeek, 3590, Belgium

Abstract

In the last decade, multi-derivative schemes for ordinary differential equa-
tions (ODE), i.e., schemes not only using the ODE’s flux, but also deriva-
tives thereof, have seen renewed interest in various applications. In [Schütz
and Seal, Applied Numerical Mathematics, 160, 2021], the authors have
introduced a two-derivative method for applications where a clear distinc-
tion can be made between stiff (to be treated implicitly) and non-stiff parts
(to be treated explicitly); they hence obtained a two-derivative IMEX (im-
plicit/explicit) scheme. In many applications, it is important that the non-
stiff part is only treated explicitly. Think, e.g., of applications where the
non-stiff part contains all the nonlinearities and should for efficiency reasons
hence only be treated explicitly. However, this non-stiff part showed up in
the second derivative of the stiff term and was hence treated implicitly as
well. In this work, we further develop the algorithm from Schütz and Seal in
such a way that the explicit part will be treated explicitly only. We define
the algorithm, show that it preserves the asymptotic behavior of certain stiff
equations, and investigate it numerically. We found that the modification we
make has no negative effect on the convergence behavior of the scheme.

Keywords: IMEX, multiderivative method

1. Introduction

In this work, we consider multiderivative implicit/explicit (IMEX) schemes
for the (typically singularly perturbed) ODE

w′(t) =
1

ε
Q(w(t); ε). (1)

Preprint submitted to Computers & Mathematics with Applications December 11, 2023

Our focus here is on the asymptotic case ε → 0. Q : Rn×R>0 → Rn is a
smooth operator that may depend on ε, yet only in a mild way, i.e., it is
possible to expand Q(w; ε) as

Q(w; ε) = Q0(w) + εQ1(w) +O(ε2) (2)

for smooth functions Q0 and Q1 that do not depend on ε. For brevity, in the
remainder of this work, we leave out the explicit dependency of Q on ε and
write Q(w). As a prototypical example, van-der-Pol like equations [18]

y′(t) = z(t), z′(t) =
g(y, z)

ε
(3)

are considered. Here, g(·, ·) is a sufficiently regular function that allows,
together with suitable initial conditions w(0), for a limit as ε → 0. For more
details on the existence of a limit, we refer the reader to standard textbooks,
e.g., [20].

In this work, we further develop a method that has been proposed in [33],
see also [13] and [34] for extensions, as an IMEX (implicit/explicit) method,
i.e., a method where stiff parts of 1

ε
Q(w) are treated implicitly, and nonstiff

parts explicitly. To define the IMEX scheme, assume that the operator Q(w)
can be written as

Q(w) = QE(w) +QI(w). (4)

Here, QE is the part that should be treated explicitly in the course of the
timestepping procedure, while QI should be treated implicitly. In practice,
QI covers ’stiff’ parts of the equation, while QE covers those that are non-stiff
and should, maybe for efficiency or accuracy reasons, be treated explicitly.
Note that both QE and QI might mildly depend on ε as Q(w). For some
examples in the context of PDE discretizations, we refer to [10, 12, 17, 25, 29]
and the references therein.

The method proposed in [33] is of the two-derivative type, see, e.g., [9,
19, 28, 34, 35, 15] and the references therein. More classical schemes only use
the ODE’s flux function 1

ε
Q(w), which obviously equals w′(t) for a solution

to (1). Using (1), one can compute

w′′(t) =

(
1

ε
Q(w)

)′
=

1

ε
Q′(w)w′ (1)

=
1

ε2
Q′(w)Q(w) =:

1

ε2
Q̇(w). (5)

2

Two-derivative integration schemes to (1) explicitly take 1
ε2
Q′(w)Q(w) into

account. Through this procedure, higher-order schemes with fewer stages or
steps can be devised.

As every IMEX scheme, the scheme proposed in [33] can also be used
fully implicitly only, i.e., without an explicit contribution. Mathematically,
this means that one defines QE(w) in (4) as being uniformly zero, and hence,
QI(w) ≡ Q(w). This implicit part of the scheme has been extended in [37]
and applied to the discontinuous Galerkin discretization of the compressible
Navier-Stokes equation in [38, 36]. While we found that this method works
very successfully on implicit schemes, it has a significant algorithmic draw-
back when applied to multiderivative IMEX schemes. Consider the process
from (5) again, but this time with the IMEX splitting from (4):

w′′(t)=
1

ε
(Q(w))′

(4)
=

1

ε
(QE(w) +QI(w))

′

(1),(4)
=

1

ε2
Q′

E(w) (QE(w) +QI(w)) +
1

ε2
Q′

I(w) (QE(w) +QI(w))

The quantities

Q̇E(w):= Q′
E(w)(QE(w) +QI(w)), (6)

Q̇I(w):= Q′
I(w)(QE(w) +QI(w)) (7)

are used in any two-derivative IMEX solver; Q̇I(w) is treated implicitly.
This, however, means that also QE(w) is treated implicitly, as it is part of the
definition of Q̇I(w). This is not a desirable property. E.g., if the splitting is
such that QI(w) is linear, inverting QE(w) would significantly deteriorate the
overall performance as then, Q̇I would not be linear any more, even though
QI is. In this work, we propose a modification to the original algorithm in
[33] such that this issue is cured. This is achieved by proposing a modification
dQI to Q̇I , see (9) below.

This publication is structured as follows: In Sec. 2, the numerical algo-
rithm is being described. The splitting of Q that this algorithm relies on
is detailed in Sec. 3. Sec. 4 and Sec. 5 are on convergence and asymptotic
properties of the algorithm, respectively. Numerical results for different test
equations and different degrees of stiffness are shown and evaluated in Sec. 6
(ODEs) and Sec. 7 (prototypical PDEs). Finally, Sec. 8 offers conclusion and
outlook.

3

2. Algorithm

In this section, we present the algorithm, following the notation intro-
duced in [34]. The algorithm to be presented relies on a two-derivative
Runge-Kutta method ’in the background’. This Runge-Kutta method is de-
fined by two Butcher matrices B(1) and B(2) for the first derivative Q(w) and
the second derivative Q̇(w), see (5). For a definition of the stages and the up-
date, see [35, Def. 1] and [34, Def. 1]. Please note that these stages/update
are never explicitly computed in the algorithm to be presented here, which
is why we do not show it. It is assumed that this Runge-Kutta method is
globally stiffly accurate, i.e., the update is equal to the last stage. Butcher
tableaux B(1) and B(2) that we use in this work are shown in [34, Example 1]
and, for convenience, also in the Appendix of this work. The only way the
Runge-Kutta method enters the algorithm is through the quadrature rule
that it defines, given by [34, eq. (5)]:

Il(Q(w1), . . . , Q(ws)) :=
∆t

ε

s∑

j=1

B
(1)
lj Q(wj) +

∆t2

ε2

s∑

j=1

B
(2)
lj Q̇(wj). (8)

All Runge-Kutta schemes are characterized by a quantity q ∈ N indicating
the order of the scheme.

Remark 1. Originally in [33], the two-derivative trapezoidal rule (fourth-
order consistency) has been used, which corresponds to a two-stage scheme
with trivial zero quadrature rule for the first stage, and for the second stage
a trapezoidal rule

I2(Q(w1), Q(w2)) :=
∆t

2ε

(
Q(w1) +Q(w2)

)
+

∆t2

12ε2

(
Q̇(w1)− Q̇(w2)

)
.

The algorithm to be presented depends on this quadrature rule Il. The
key change in comparison to the works in [33] is the change in the quantity
Q̇I(w). Instead of the quantity Q̇I(w) defined in (6), we use the function
dQI , defined as

dQI(u, v) := Q′
I(v)(QE(u) +QI(v)). (9)

Note that Q̇I(w) ≡ dQI(w,w). The idea is to put the implicitness on v
rather than on u. In this way, the scheme can for example make use of the
fact that in many cases, QI(w) is ’easier’ to invert than QE(w).

4

With these preliminaries, we can now formulate the numerical algorithm
which is given in predictor-corrector format. For the ease of presentation, we
rely on constant timesteps ∆t which, however, is not a necessity. As usual,
we define tn := n∆t; the same notation as in [34] is used. In particular, we

define Q
n,[k],l
I := QI(w

n,[k],l) (and similar for other functions) in the following.
The meaning of the indices is clarified in Rem. 2 below.

Algorithm 1 (HBPC(q, kmax) [34]). The algorithm introduced in [34] is given
in predictor-corrector form. In a first step, stage-values are predicted using a
second-order IMEX-Taylor scheme; subsequently, these values are corrected
towards the background Runge-Kutta scheme.

1. Predict. Solve the following expression for wn,[0],l and each 1 ≤ l ≤ s:

wn,[0],l := wn +
cl∆t

ε

(
Q

n,[0],l
I +QE(w

n)
)

+
(cl∆t)2

2ε2

(
Q̇E(w

n)− dQI(w
n, wn,[0],l)

)
.

(10)

2. Correct. The following expression has to be solved for wn,[k+1],l for
each 1 ≤ l ≤ s and 0 ≤ k ≤ kmax − 1:

wn,[k+1],l :=wn + θ1
∆t

ε

(
Q

n,[k+1],l
I −Q

n,[k],l
I

)

− θ2
∆t2

2ε2

(
dQI(w

n,[k],l, wn,[k+1],l)− Q̇
n,[k],l
I

)

+ Il(Q
n,[k],0, . . . , Qn,[k],s).

(11)

3. Update.

wn+1 := wn,[kmax],s.

Remark 2. The method’s formulation is rather complex. Let us therefore
clarify the following points:

• The quantity wn,[k],l is an approximation to w(tn + cl∆t). The cl, 1 ≤
l ≤ s, are given by the underlying two-derivative Runge-Kutta method
that defines the quadrature rule (8). The integer k, 0 ≤ k ≤ kmax,
where kmax is a user-defined parameter, denotes the correction level of
the method. Roughly speaking, this corresponds to an accuracy level of
order ∆tmin{q,k+2}, see Thm. 4.1 below.

5

• The constant scalar values θ1 and θ2 are used to improve upon the
stabilization of the method, see [37]. Based on the analysis in [37], they
are chosen to be (θ1, θ2) = (1

2
, 1
6
) for the fourth-order scheme, (θ1, θ2) =

(0.283, 0.0528) for the sixth-order scheme, and (θ1, θ2) = (0.395, 0.0375)
for the eighth-order scheme, respectively.

• The method can, for a given and fixed kmax, be written as a two-
derivative Runge-Kutta method.

• Alg. 1 has been formulated in a time-parallel version [34], which comes
down to a slight modification of the terms involving wn. Then, it can
not be written as a two-derivative Runge-Kutta method any more, but
the method is of second-derivative GLM-type (general linear method
[1, 8, 27]). The time-parallel variant has been explored broadly in [34,
38], it is completely independent of the IMEX modification done here.
Therefore, for the sake of an easier presentation, we do not use this
modification in this publication.

• Please note that Il is always evaluated using Q rather than QI or QE.
This is possible as the evaluation of Il is always explicit, as it is eval-
uated on lower-level corrections.

3. Splitting properties

Obviously, not all splittings (4) are reasonable. In particular when ap-
proximating PDEs, this can become quite cumbersome and influence the
stability of an overall scheme [32]. In this subsection, we define important
basic properties on QI and QE that are needed in the sequel:

Assumption 3.1. All occuring functions Q, QI , QE as well their temporal
derivatives Q̇, Q̇I , Q̇E are assumed to be smooth and Lipschitz continuous.
We assume there exist appropriate constants LQ, LQ̇ > 0 with

∥Q(w1)−Q(w2)∥ ≤ LQ∥w1 − w2∥, ∥Q̇(w1)− Q̇(w2)∥ ≤ LQ̇∥w1 − w2∥,

similarly for Q̇I and Q̇E.

Definition 1 (Admissible splitting). A splitting of Q(w) into QI(w) and
QE(w) is admissible if there holds:

6

• (Consistency) Q(w) = QI(w) +QE(w).

• (ε-smoothness) Both QI and QE can be written in terms of a Hilbert
expansion as in (2), i.e.,

QI(w) = QI,0(w) + εQI,1(w) +O(ε2), (12)

QE(w) = QE,0(w) + εQE,1(w) +O(ε2). (13)

• (Non-stiffness of QE) It is assumed that QE,0 ≡ 0.

• (Asymptotic preserving) The equality

Q′
I,0(w)QI,0(w) = 0 (14)

implies Q0(w) = 0.

Remark 3. Please note the following easy consequences of Def. 1:

• From the ε-smoothness, there follows that also dQI has a Hilbert ex-
pansion, i.e.,

dQI(w) = dQI,0(w) + εdQI,1(w) +O(ε2).

• From the fact that QE,0 ≡ 0, there follows that Q̇E(w) = O(ε2) if only
Q(w) = O(ε). This is a straightforward consequence of the definition
Q̇E := Q′

E(w)Q(w).

Remark 4. While the first three points of Def. 1 are relatively obvious,
the fourth one deserves some explanation. Assume that the simplest IMEX
scheme, IMEX-Euler, is being considered, i.e.,

wn+1 − wn

∆t
=

1

ε

(
QE(w

n) +QI(w
n+1)

)
. (15)

The ε-expansion to lowest order of (1) is given by

Q0(w0) = 0,

where a Hilbert expansion of w, i.e., w = w0+ εw1+O(ε2), is assumed. It is
thus reasonable to use initial conditions w0 such that there holds Q0(w

0
0) = 0,

where w0
0 is the lowest-order expansion of w0. Assuming that w1 has a Hilbert

7

expansion as well, which can be proved in some cases [5, 25], reveals that to
lowest order in ε, (15) yields

0 = QE,0(w
0
0) +QI,0(w

1
0).

Due to the asymptotic preserving property (just multiply by Q′
I,0(w)), this

implies that Q0(w
1
0) is zero, which hence means that the numerical methods

respects the continuous asymptotics.

Remark 5. The standard – and most straightforward – splitting for (3) as,
e.g., used in [4], yields

QI(w) =

(
0

g(y, z)

)
, QE(w) =

(
εz
0

)
. (16)

Most splitting requirements are easy to show. The asymptotic preserving
(AP) property necessitates that ∂zg(y, z) ̸= 0, which is a natural condition to
require from a singular perturbation kind of view, see [20].

4. Order of convergence

In [33, 34], a thorough consistency analysis has been done. It turns out
that the order of the method is the order of the predictor – in this special
case here two – increased by one for each additional correction step, until the
maximum order of the underlying Runge-Kutta scheme is obtained. This is
formalized in the following theorem:

Theorem 4.1. Let the solution to (1) be sufficiently smooth. Furthermore,
let Tend > 0 be fixed and consider ∆t such that it is possible to find N ∈ N
with N · ∆t = Tend. Then, for the approximations generated using Alg. 1,
there holds that

∥wN − w(Tend)∥∞ = O(∆tmin{q,2+kmax}),

where q is the order of the underlying Runge-Kutta method (8).

The proof is a straightforward extension of the proof done in [33], it is
hence omitted here. Please note that, in contrast to the setting in [34], we
do not treat the time-parallel case, hence, the method can be formulated as
a one-step method. Convergence follows thus trivially from consistency.

8

5. Asymptotic properties of the algorithm

With these preliminaries in place, we can now show that Alg. 1 is asymp-
totic preserving, meaning that Q(w)

ε
is bounded (for ε → 0) also for the

discrete solution. We start by showing this property for the predictor, which
is the most difficult part; the corrector then follows easily.

Theorem 5.1. Let w be defined as

w = wn +
∆t

ε
(QI(w) +QE(w

n)) +
∆t2

2ε2

(
Q̇E(w

n)− dQI(w
n, w)

)
. (17)

It is assumed that w has a Hilbert expansion. Then, there holds

Q0(w0) = 0.

Proof. There holds

QI(w) = QI,0(w) + εQI,1(w) +O(ε2)

= QI,0(w0) + ε
(
Q′

I,0(w0)w1 +QI,1(w0)
)
+O(ε2).

Similarly, dQI is expanded as

dQI(w
n, w) = dQI,0(w

n, w0) + ε
(
dQ′

I,0(w
n, w0)w1 + dQI,1(w

n, w0)
)
+O(ε2).

Plugging this into (17) and separating scales yields that to highest order
O(ε−2), there holds

Q̇E,0(w
n
0)− dQI,0(w0) = 0.

It is easy to see that

dQI,0(w0) = Q′
I,0(w0)(QE,0(w

n
0) +QI,0(w0)).

From the non-stiffness of the explicit part, it is known that QE,0 = 0. Then,
this and the property (14) implies that Q0(w0) = 0 and also QI,0(w0) = 0.
(This last fact is true becauseQ0 andQI,0 must coincide due toQE,0 ≡ 0.)

Remark 6. Obviously, the same statement is also true for the predictor of
Alg. 1, as the cl do not depend on ε.

Theorem 5.2. Let wn+1 be the solution from Alg. 1. Furthermore, as-
sume that both wn and wn+1 possess Hilbert expansions. Then, there holds
Q0(w

n+1
0) = 0.

Proof. The proof works inductively on k, and is very much alike to the one
of Thm. 5.1, which is why we omit it here.

Remark 7. Proving that a Hilbert expansion exists has been done for a
related algorithm in [33] using the theorem of Newton-Kantorovich.

9

6. Numerical results: ODEs

In this section, we show numerical results, demonstrating the theoretical
findings and the capabilities of the presented algorithm. As background
schemes, we choose the fourth, sixth, and eighth order scheme, respectively,
from [34, Example 1]; leading to the HBPC(4, kmax), HBPC(6, kmax) and
HBPC(8, kmax), respectively. The underlying schemes from [34] are classical
Hermite-Birkhoff collocation schemes, set up through an interpolation with
equally spaced nodes, and two derivatives per node. Van der Pol’s equation
is used in the sequel. This is eq. (3) with function g defined by

g(y, z) = (1− y2)z − y.

Initial conditions are given by [3]

(
y(0)
z(0)

)
=

(
2

−2
3
+ 10

81
ε− 292

2187
ε2

)
, (18)

this ensures that the solution remains smooth, independently of ε, at least for
some (finite) time t. To keep away from the critical time where the solution
becomes non-smooth in the transition ε → 0, we use Tend = 0.5. We use the
convention that w = (y, z).

The splitting that we use is the straightforward one from eq. (16), where
all terms in Q depending on ε will be put to the explicit part; the others
will be put to the implicit part. The following three different algorithms are
considered here:

• (Novel IMEX) The IMEX scheme developed in this work, see Alg. 1.

• (Classical IMEX) The IMEX scheme developed in [33, 34]. Based on a
splitting Q(w) = QI(w) +QE(w), the only difference to this work here
is the replacement of dQI in Alg. 1 by the actual quantity Q̇I(w) :=
Q′

I(w)Q(w).

• (Fully implicit) The fully implicit one. This corresponds to formally
setting QI(w) ≡ Q(w), and hence QE(w) ≡ 0, in Alg. 1.

In all our computations, we use Newton’s method as a method to solve
the arising nonlinear systems of equations. Newton’s solver’s absolute and
relative tolerance are set to 10−12, with a maximum of 2000 iterations. For

10

all convergence plots, the coarsest computation uses only four sub intervals,
the finest one 29 subintervals. This comes hence down to time steps ranging
from ∆t = Tend

22
to ∆t = Tend

29
. As error measure, we use the quantity

e∆t := ∥wN − w(Tend)∥2,

where N := Tend

∆t
.

Remark 8. If QI is a linear function in w, then the equations (10) and
(11) are linear, so for the novel IMEX method, Newton is not needed (or,
equivalently, only one Newton step is needed). This is the case for the viscous
Burgers equation in Sec. 7.1. For the ODE used here, this is not the case,
so a nonlinear root-finding algorithm (Newton) is still necessary. We have
chosen van der Pol in order to show that Alg. 1 behaves qualitatively and
quantitatively similar to the original algorithm, which is of course important
for a later extension.

6.1. Asymptotic behavior and comparison: Fourth-order scheme

Of utmost importance to a succesful IMEX method is obviously its be-
havior for stiff equations. It has already been shown in Thm. 5.2 that the
method preserves the asymptotics of the equation. In this subsection, numer-
ical results for different ε are shown, along with a comparison of the splitting
developed in [33, 34]. Fig. 1 shows numerical computations of the HBPC(4,
kmax)-scheme for the van der Pol equation for various ε, kmax and the three
different splitting types considered here (the newly developed one, the one
from [33], and the fully implicit trivial splitting).

Several remarks need to be made: First of all, for ’moderately small’
ε > 10−4, fourth order is achieved for all three splittings throughout all
∆t considered. For smaller ε, it needs more ∆t−refinement to reach the
asymptotic zone. Second, it is clearly visible that, as kmax increases, the
errors become substantially smaller for the splitted schemes – in particular for
the very small ε = 10−6 that ultimately also shows fourth order convergence.
The fully implicit scheme behaves very well in the first place for all ε. Also,
it is visible that all the schemes seem to converge to a common scheme for
larger kmax, which is not a surprise, as in this case, all schemes converge
against the background scheme. Furthermore, for kmax = 20, the numerical
error is hardly dependent on ε, a similar trend can already be seen for lower
kmax.

11

All these observations are very much in line with the observations made
in [33, 34]. Concerning the asymptotic results, the ones shown here also
compare very favorably with similar results (on another equation) to those
made in [15]. The most important conclusion of this section is that the novel
splitting, even though it contains more ’explicit’ terms than the one from
[33], does not interfere with either numerical or asymptotic accuracy of the
method.

Similar investigations for Pareschi-Russo and Kaps equation ([30] and
[22], both not shown here for brevity) have been done. They show similar
behavior, although for Pareschi-Russo equation, the background scheme does
not perform too well, quite some order reduction is visible for small ε.

6.2. Comparison to IMEX Runge-Kutta schemes

Obviously, IMEX Runge-Kutta schemes have a long tradition in numeri-
cal analysis, see, e.g., [2, 6, 7, 31, 26] (which, obviously, is a highly incomplete
list!) and the references therein. We have chosen to compare our scheme to
a couple of IMEX Runge-Kutta schemes from literature, see Fig. 2. Testcase
is van der Pol equation with ε = 0.1 and ε = 10−5, respectively; and we com-
pare to the fourth-order scheme from Alg. 1 for various values of kmax. For
the non-stiff case of ε = 0.1, it can be seen that the HBPC scheme outper-
forms the schemes that were chosen for comparison in terms of ∆t versus size
of the error. In particular, as one would expect, for this case there is hardly
any difference between choosing kmax = 2, 5 or 20, respectively. For the stiff
case, results are in some way similar in the sense that for kmax > 2, the HBPC
scheme outperforms all schemes, with the exception of the ARK4SA scheme
from [26] for large ∆t. As a conclusion, it can be seen from these plots that
the scheme presented in Alg. 1 performs very well also in comparison to more
established schemes from literature.

6.3. Asymptotic behavior and comparison: Higher-order schemes

While in the last subsections, we have been discussing fourth-order schemes,
here, we consider sixth- and eighth-order schemes. The results are pretty
much in line with the results in the last section. In Fig. 3, numerical results
are shown for the eighth-order scheme HBPC(8, kmax) and different values
of ε and kmax. We have inclued higher values of kmax as before, as it is
clearly visible from the figures that the method based on the novel splitting
takes significantly more steps to converge towards the background scheme.
While classical splitting and fully implicit scheme are already converged at

12

10−3 10−2 10−1

10−15

10−13

10−11

10−9

10−7

10−5

10−3

k
m
a
x
=

2

Novel splitting

10−3 10−2 10−1

10−15

10−13

10−11

10−9

10−7

10−5

10−3

Classical splitting

10−3 10−2 10−1

10−15

10−13

10−11

10−9

10−7

10−5

10−3

Fully implicit

ε = 1.0× 10−1

ε = 1.0× 10−2

ε = 1.0× 10−3

ε = 1.0× 10−4

ε = 1.0× 10−5

ε = 1.0× 10−6

10−3 10−2 10−1

10−15

10−13

10−11

10−9

10−7

10−5

10−3

k
m
a
x
=

5

10−3 10−2 10−1

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−3 10−2 10−1

10−15

10−13

10−11

10−9

10−7

10−5

10−3

ε = 1.0× 10−1

ε = 1.0× 10−2

ε = 1.0× 10−3

ε = 1.0× 10−4

ε = 1.0× 10−5

ε = 1.0× 10−6

10−3 10−2 10−1

10−15

10−13

10−11

10−9

10−7

10−5

10−3

Size of ∆t

k
m
a
x
=

20

10−3 10−2 10−1

10−15

10−13

10−11

10−9

10−7

10−5

10−3

Size of ∆t

10−3 10−2 10−1

10−15

10−13

10−11

10−9

10−7

10−5

10−3

Size of ∆t

ε = 1.0× 10−1

ε = 1.0× 10−2

ε = 1.0× 10−3

ε = 1.0× 10−4

ε = 1.0× 10−5

ε = 1.0× 10−6

Figure 1: Numerical results for van der Pol equation (3) and (18) with varying ε. Plotted
is the error e∆t versus ∆t. The first row shows numerical results for kmax = 2, the second
for kmax = 5, and the third for kmax = 20. The used scheme is the HBPC(4, kmax)
scheme. In the first column, we present numerical results for the novel IMEX splitting,
in the second for the classical splitting from [33], and the third column is fully implicit,
without a splitting. The legend in the right plot is valid for all plots.

13

10−3 10−2 10−1

10−12

10−10

10−8

10−6

10−4

10−2

100

Size of ∆t

E
rr
or

ε = 0.1

10−3 10−2 10−1

Size of ∆t

ε = 10−5

ARS222 [2] ARS443 [2] BPR353 [6] SSP332 [7] SSP433 [31]

ARK4SA [26] HBPC(4,2) HBPC(4,5) HBPC(4,20)

Figure 2: Comparison among different IMEX one-derivative Runge-Kutta schemes and
the scheme HBPC(4, kmax) with kmax = 2, kmax = 5, and kmax = 20. Numerical results
for van der Pol equation (3) and (18) with ε = 0.1 (left) and ε = 10−5 (right). Plotted is
the error e∆t versus ∆t. The order of the IMEX Runge-Kutta schemes can be seen from
the red digit in the legend.

14

kmax = 20, it takes (for very low values of ε) more than 100 correction steps
for the novel splitting. This can be explained through the fact that the novel
splitting comes with less implicitness, making a convergence in k more diffi-
cult. However, we see that even for low values of kmax, there is no stability
issue and, at least for moderate values of ε, errors are in the regime of the
background scheme. Please do also note that convergence in k is not a neces-
sity for the algorithm to work; and that for practical problems, iterations of
the novel scheme will be significantly cheaper than those of the others. The
fact that it takes longer to converge to the background scheme is something
that manifests itself also for other problems, e.g., for Pareschi-Russo equation
(not shown here).

15

10−3 10−2 10−1

10−15

10−13

10−11

10−9

10−7

10−5

10−3

k
m
a
x
=

20

Novel splitting

10−3 10−2 10−1

10−15

10−13

10−11

10−9

10−7

10−5

10−3

Classical splitting

10−3 10−2 10−1

10−15

10−13

10−11

10−9

10−7

10−5

10−3

Fully implicit

ϵ = 1.0× 10−1

ϵ = 1.0× 10−2

ϵ = 1.0× 10−3

ϵ = 1.0× 10−4

ϵ = 1.0× 10−5

10−3 10−2 10−1

10−15

10−13

10−11

10−9

10−7

10−5

10−3

k
m
a
x
=

40

10−3 10−2 10−1

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−3 10−2 10−1

10−15

10−13

10−11

10−9

10−7

10−5

10−3

ϵ = 1.0× 10−1

ϵ = 1.0× 10−2

ϵ = 1.0× 10−3

ϵ = 1.0× 10−4

ϵ = 1.0× 10−5

10−3 10−2 10−1

10−15

10−13

10−11

10−9

10−7

10−5

10−3

k
m
a
x
=

10
0

10−3 10−2 10−1

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−3 10−2 10−1

10−15

10−13

10−11

10−9

10−7

10−5

10−3

ϵ = 1.0× 10−1

ϵ = 1.0× 10−2

ϵ = 1.0× 10−3

ϵ = 1.0× 10−4

ϵ = 1.0× 10−5

10−3 10−2 10−1

10−15

10−13

10−11

10−9

10−7

10−5

10−3

Size of ∆t

k
m
a
x
=

20
0

10−3 10−2 10−1

10−15

10−13

10−11

10−9

10−7

10−5

10−3

Size of ∆t

10−3 10−2 10−1

10−15

10−13

10−11

10−9

10−7

10−5

10−3

Size of ∆t

ϵ = 1.0× 10−1

ϵ = 1.0× 10−2

ϵ = 1.0× 10−3

ϵ = 1.0× 10−4

ϵ = 1.0× 10−5

Figure 3: Numerical results for van der Pol equation (3) and (18) with varying ε. Plotted
is the error e∆t versus ∆t. The first row shows numerical results for kmax = 20, the second
for kmax = 40, third for kmax = 100 and the last for kmax = 200. The used scheme is the
HBPC(8, kmax) scheme. In the first column, we present numerical results for the novel
IMEX splitting, in the second for the classical splitting from [33], and the third column is
fully implicit, without a splitting. The legend in the right plot is valid for all plots.

16

7. Numerical results: PDEs

In this section, we consider the application of Alg. 1 to prototypical partial
differential equations. This serves as a proof-of-concept and hence, we will
use rather straightforward spatial discretization procedures in the following,
namely Lagrange-type finite differences. The algorithm will be tested on
Burgers equation and Cahn-Hilliard equation.

7.1. Viscous Burgers equation

As a testcase where obviously two very different operators (nonlinear
convection and linear diffusion) are involved, we consider the viscous Burgers
equation

wt +

(
w2

2

)

x

= wxx, (x, t) ∈ (0, 2π)× (0, Tend = 0.5), (19)

w(x, 0) = sin(x)2, x ∈ (0, 2π), (20)

with periodic boundary conditions in space. An exact solution can be ob-
tained through the Cole-Hopf transformation [21]. As underlying spatial dis-
cretization, we choose finite differences based on the eighth-order Lagrange
polynomial, yielding

∆x

(
w2

2

)

x

≈
4∑

i=−4

αi

(
w2

i

2

)
, ∆x2wxx ≈

4∑

i=−4

βiwi.

wi denotes an approximation to w at point xi (for the respective time level,
obviously); and the coefficients α and β are given by

α =
1

5040
(18,−192, 1008,−4032, 0, 4032,−1008, 192,−18) ,

β =
1

5040
(−9, 128,−1008, 8064,−14350, 8064,−1008, 128,−9) .

As we are in the diffusion-dominated regime in this work, we do not consider
any upwinding here. This, however, could be easily incorporated through a
suited WENO scheme or the like.

An obvious splitting here is to treat the diffusion wxx implicitly, while

treating the convection term
(

w2

2

)
x
explicitly. The explicit part is then

nonlinear, while the implicit part is linear. This is exactly the case that we

17

had in mind when developing the current algorithm. The quantity dQI(u, v)
will remain linear in v, hence, there is no nonlinearity that needs to be solved
in the IMEX procedure of Alg. 1.

In this work, we are interested in temporal convergence only. Hence, we
fix the spatial resolution to consist of Nx = 140 points; mesh spacing is then
given by ∆x = 2π

140
. The coarsest computation uses four temporal subinter-

vals, i.e., ∆t = 1
8
. Please note that on the coarsest level, this corresponds

to a CFL number at time t = 0 (maxx | sin(x)2| = 1) of ∆t
∆x

= 140
16π

≈ 2.8 for
this high-order scheme. This is only possible because the viscosity is treated
implicitly. The finest computation uses 29 spatial subintervals. As an error
measure, we use the quantity

e∆t := ∥wN − w(Tend)∥2,

where we have defined as before the quantity N := Tend

∆t
. The vector wN is

the collection of the spatial values of the function at time Tend, i.e.,

wN = (wN
1 , . . . , w

N
Nx
)T ,

where wN
i ≈ w(xi, Tend). The i−th component of w(Tend) is given by the

exact solution at point (xi, Tend), with xi = i∆x. Fig. 4 shows convergence
results for the fourth-, the sixth- and the eighth-order scheme for several
values of kmax and the three splittings discussed in this work. It can be
clearly seen that convergence orders are met until the spatial accuracy for
this given mesh resolution at an error level of about 10−11 is hit. No stability
issue occurs.

This testcase is prototypical for the applications we have in mind, which
are Euler equations at low Mach numbers, see also Sec. 8: The implicit part is
a linear function in the unknown, while the explicit part is a highly nonlinear
function. It is for exactly this kind of testcases that the novel method should
have an advantage over the existing ones as, due to the linearity of the prob-
lem, one only needs one Newton step per solve rather than possibly multiple.
In Fig. 5, the amount of Newton steps per algebraic solve is plotted for the
HBPC(8, kmax) scheme for various kmax. Newton’s tolerances, both relative
and absolute, have been set to 10−10 with a maximum of 10 iterations. The
following observations can be made: For ’stiffer’ problems – in this case this
means that ∆t is large – the difference between the fully implicit/classical
scheme and the novel one from Alg. 1 is quite huge, up to a factor of three.

18

10−3 10−2 10−1

10−15

10−13

10−11

10−9

10−7

10−5

10−3

H
B
P
C
(4
,k

m
a
x
)

Novel splitting

10−3 10−2 10−1

10−15

10−13

10−11

10−9

10−7

10−5

10−3

Classical splitting

10−3 10−2 10−1

10−15

10−13

10−11

10−9

10−7

10−5

10−3

Fully implicit

kmax = 2

kmax = 4

kmax = 6

kmax = 20

10−3 10−2 10−1

10−15

10−13

10−11

10−9

10−7

10−5

10−3

H
B
P
C
(6
,k

m
a
x
)

10−3 10−2 10−1

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−3 10−2 10−1

10−15

10−13

10−11

10−9

10−7

10−5

10−3

kmax = 2

kmax = 4

kmax = 6

kmax = 20

10−3 10−2 10−1

10−15

10−13

10−11

10−9

10−7

10−5

10−3

Size of ∆t

H
B
P
C
(8
,k

m
a
x
)

10−3 10−2 10−1

10−15

10−13

10−11

10−9

10−7

10−5

10−3

Size of ∆t

10−3 10−2 10−1

10−15

10−13

10−11

10−9

10−7

10−5

10−3

Size of ∆t

kmax = 2

kmax = 4

kmax = 6

kmax = 20

Figure 4: Numerical results for Burgers equation (19). Plotted is the error e∆t versus ∆t
for different values for the kmax. The first row shows numerical results for the method
HBPC(4, kmax), the second for the method HBPC(6, kmax) and the third for the method
HBPC(8, kmax). In the first column, we present numerical results for the fully implicit
scheme, in the second for the splitting from [33], and the third column is the novel splitting.
The legend in the right plot is valid for all plots.

If the problem becomes less stiff, i.e., if ∆t becomes smaller, then this differ-
ence also becomes smaller. Furthermore, with growing kmax, the difference
becomes smaller. Also this is to be expected, because the higher corrections
will not add much to the solution in this case, and hence, the algebraic solves
can be done with one Newton step also for the fully implicit and the classical
scheme.

19

10−3 10−2 10−1

1

1.5

2

2.5

3

Size of ∆t

A
ve
ra
ge

N
ew

to
n
it
er
at
io
n
s
p
er

so
lv
e

kmax = 2

Fully implicit

Classical splitting

Novel IMEX

10−3 10−2 10−1

1

1.5

2

2.5

3

Size of ∆t

kmax = 4

Fully implicit

Classical splitting

Novel IMEX

10−3 10−2 10−1

1

1.5

2

2.5

3

Size of ∆t

A
ve
ra
ge

N
ew

to
n
it
er
at
io
n
s
p
er

so
lv
e

kmax = 6

Fully implicit

Classical splitting

Novel IMEX

10−3 10−2 10−1

1

1.5

2

2.5

3

Size of ∆t

kmax = 20

Fully implicit

Classical splitting

Novel IMEX

Figure 5: Numerical results for Burgers equation (19). Plotted is the relative number
of Newton iterations versus ∆t for all the splittings for the method HBPC(8, kmax) and
different number of correction steps kmax = 2, 4, 6, 20.

20

7.2. Cahn-Hilliard equation

As a final test, we consider the Cahn-Hilliard equation

wt = (Φ′(w)− εwxx︸ ︷︷ ︸
:=µ

)xx, (x, t) ∈ (0, 1)× (0, Tend = 0.5), (21)

where the chemical potential Φ(w) is defined as Φ(w) = 1
4
(w2 − 1)2. ε is a

positive constant describing the thickness of the interface of the phase field;
it is set to ε = 0.001 in the sequel. For more information, consult [23].
Boundary and initial conditions are set as in [11],

100w(x, 0) = 10 sin(2πx) + cos(4πx) + 6 sin(4πx) + 2 cos(10πx),

wx(x, t) = µx(x, t) = 0, (x, t) ∈ {0, 1} × (0, Tend).

From a numerical point of view, this equation is quite challenging due
to the occurence of a fourth-order derivative in combination with the non-
linearity of the chemical potential. It is worth noting that explicit schemes
need a restriction of the timestep, ∆t = O(∆x4) [16]. To obtain a suitable
splitting, we use the convex-concave splitting introduced by [14], i.e., Φ′(w)
is split into

Φ′(w) = w3 − w,

where w3 is treated implicitly, and w is treated explicitly. The double-
diffusion part εwxxxx is also treated implicitly. Spatial discretization is through
a straightforward second-order finite difference approach.

Still, our interest is on temporal convergence, which is why we fix the
spatial resolution. We report on the results for Nx = 50 with associated
mesh spacing ∆x = 1

50
. The coarsest computation uses four subintervals,

i.e., ∆t = 1
8
. The finest computation uses 29 spatial subintervals. Error is

computed as in Sec. 7.1. Newton tolerance is set to 10−7 with a maximum
of 1000 iterations; the exact solution is computed through Matlab’s ode15s
routine with very fine precision.

Fig. 6 shows the corresponding convergence plots. This testcase is way
more challenging than the one before, which is also expressed in the conver-
gence results. It is way more difficult to obtain the appropriate order; only at
rather fine ∆t, the actual order can be observed in most of the combinations.
In any cases, no stability issues were observed.

21

10−3 10−2 10−1
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

H
B
P
C
(4
,k

m
a
x
)

Novel splitting

10−3 10−2 10−1
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102
Classical splitting

10−3 10−2 10−1
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102
Fully implicit

kmax = 2

kmax = 6

kmax = 20

10−3 10−2 10−1
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

H
B
P
C
(6
,k

m
a
x
)

10−3 10−2 10−1
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

10−3 10−2 10−1
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

kmax = 2

kmax = 6

kmax = 20

10−3 10−2 10−1
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

Size of ∆t

H
B
P
C
(8
,k

m
a
x
)

10−3 10−2 10−1
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

Size of ∆t

10−3 10−2 10−1
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

Size of ∆t

kmax = 2

kmax = 6

kmax = 20

Figure 6: Numerical results for Cahn-Hilliard equation (21). Plotted is the error e∆t

versus ∆t for different values for the kmax. ε is set to 10−3; the amount of space nodes
is Nx = 50. The first row shows numerical results for the method HBPC(4, kmax), the
second for the method HBPC(6, kmax) and the third for the method HBPC(8, kmax). In
the first column, we present numerical results for the fully implicit scheme, in the second
for the splitting from [33], and the third column is the novel splitting. The legend in the
right plot is valid for all plots.

22

8. Conclusion and Outlook

In this work, we have presented a novel way of defining the implicit second
temporal derivative of a flux-split IMEX scheme. This has been done in such
a way that the non-stiff (explicit!) contribution never has to be inverted and
remains explicit throughout the whole procedure. This has not been done
before; it will now open many possibilities for future work. Current research
focuses on the extension of this to the low-Mach Navier-Stokes equations
that themselves form a singularly perturbed problem. There have been many
splitting attempts in the past where the stiff splitting is rather easy, typically
linear, it is now feasible to also use them in the context of a second derivative
scheme. As an example, consider the isentropic Euler equations at low Mach
number [24],

ρt +∇ · (ρu) = 0,

(ρu)t +∇ ·
(
ρu⊗ u+

1

ε2
p(ρ) Id

)
= 0.

Here, ρ, u and p denote density, velocity and pressure of an isentropic fluid,
where pressure is a function of density. In [17], a splitting of this equation
into implicit (’stiff’) and explicit (’non-stiff’) parts has been proposed as

ρt +∇ · (αρu) + ∇ · ((1− α)ρu) = 0,

(ρu)t +∇ ·
(
ρu2 +

p(ρ)− a(t)ρ

ε2
Id

)
+ ∇ ·

(
a(t)ρ

ε2
Id

)
= 0,

where the second divergence terms of each equation denote the implicit part.
It is straightforward to see that these implicit terms are linear in the un-
knowns ρ and ρu. For a concise definition of α and a(t), we refer to [17].
Currently, we analyze the algorithm presented in this work together with a
high-order spatial discretization to solve splitted low-Mach Euler equations.
First results show that also here, the method is asymptotically preserving.
Furthermore, the fact that Alg. 1 preserves the linearity of the implicit split-
ting will result in a huge computational saving.

An important ingredient to the algorithm is the background scheme. We
have seen that for higher orders of consistency, the HBPC scheme with uni-
form collocation points as used in this work does not excel at high degrees
of stiffness. Currently, we are experimenting with Gaussian-type collocation
points to improve upon this.

23

Some other open questions are the extension to higher temporal deriva-
tives and to other second- or multi-derivative IMEX schemes. We envision
that the approach pursued here can be extended by the means of a Taylor
expansion in the explicit part, the behavior and stability have to be investi-
gated both numerically and analytically.

Acknowledgments

E. Theodosiou was funded by the Fonds voor Wetenschappelijk Onder-
zoek (FWO, Belgium) - project no. G052419N

9. Appendix: Butcher tableaux

For convenience, we list the Butcher tableaux that we use in this work
here, see also [34, Example 1] and the references therein.

• q = 4:

B(1) =

(
0 0

1
2

1
2

)
, B(2) =

(
0 0

1
12

−1
12

)
. (22)

• q = 6:

B(1) =




0 0 0

101
480

8
30

55
2400

7
30

16
30

7
30


 , B(2) =




0 0 0

65
4800

− 25
600

− 25
8000

5
300

0 − 5
300


 . (23)

• q = 8:

B(1) =




0 0 0 0

6893
54432

313
2016

89
2016

397
54432

223
1701

20
63

13
63

20
1701

31
224

81
224

81
224

31
224




,

B(2) =




0 0 0 0

1283
272160

− 851
30240

− 269
30240

− 163
272160

43
8505

− 16
945

− 19
945

− 8
8505

19
3360

− 9
1120

9
1120

− 19
3360




.

(24)

24

References

[1] A. Abdi and G. Hojjati. An extension of general linear methods. Nu-
merical Algorithms, 57(2):149–167, 2011.

[2] U. M. Ascher, S. Ruuth, and R. Spiteri. Implicit-explicit Runge-Kutta
methods for time-dependent partial differential equations. Applied Nu-
merical Mathematics, 25:151–167, 1997.

[3] S. Boscarino. Error analysis of IMEX Runge-Kutta methods derived
from differential-algebraic systems. SIAM Journal on Numerical Anal-
ysis, 45:1600–1621, 2007.

[4] S. Boscarino. On an accurate third order implicit-explicit Runge-Kutta
method for stiff problems. Applied Numerical Mathematics, 59:1515–
1528, 2009.

[5] S. Boscarino and L. Pareschi. On the asymptotic properties of IMEX
Runge–Kutta schemes for hyperbolic balance laws. Journal of Compu-
tational and Applied Mathematics, 316:60 – 73, 2017.

[6] S. Boscarino, L. Pareschi, and G. Russo. Implicit-explicit Runge–Kutta
schemes for hyperbolic systems and kinetic equations in the diffusion
limit. SIAM Journal on Scientific Computing, 35(1):A22–A51, 2013.

[7] S. Boscarino, J.-M. Qiu, G. Russo, and T. Xiong. A high order semi-
implicit IMEX WENO scheme for the all-Mach isentropic Euler system.
Journal of Computational Physics, 392:594–618, 2019.

[8] J. C. Butcher. General linear methods. Acta Numerica, 15:157–256,
2006.

[9] R. Chan and A. Tsai. On explicit two-derivative Runge-Kutta methods.
Numerical Algorithms, 53:171–194, 2010.

[10] F. Cordier, P. Degond, and A. Kumbaro. An asymptotic-preserving
all-speed scheme for the Euler and Navier-Stokes equations. Journal of
Computational Physics, 231:5685–5704, 2012.

[11] E. V. L. de Mello and O. T. da Silveira Filho. Numerical study of the
Cahn-Hilliard equation in one, two and three dimensions. Physica A.
Statistical Mechanics and its Applications, 347(1-4):429–443, 2005.

25

[12] P. Degond and M. Tang. All speed scheme for the low Mach number limit
of the isentropic Euler equation. Communications in Computational
Physics, 10:1–31, 2011.

[13] A. Dittmann. High-order multiderivative IMEX schemes. Applied Nu-
merical Mathematics, 160:205 – 216, 2021.

[14] D. Eyre. Unconditionally gradient stable time marching the Cahn-
Hilliard equation. MRS Proceedings, 529:39, 1998.

[15] S. Gottlieb, Z. Grant, J. Hu, and R. Shu. High order strong stability
preserving multiderivative implicit and IMEX Runge–Kutta methods
with asymptotic preserving properties. SIAM Journal on Numerical
Analysis, 60(1):423–449, 2022.

[16] R. Guo and Y. Xu. Efficient solvers of discontinuous Galerkin discretiza-
tion for the Cahn–Hilliard equations. Journal of Scientific Computing,
58(2):380–408, jun 2013.

[17] J. Haack, S. Jin, and J.-G. Liu. An all-speed asymptotic-preserving
method for the isentropic Euler and Navier-Stokes equations. Commu-
nications in Computational Physics, 12:955–980, 2012.

[18] E. Hairer, S. P. Nørsett, and G. Wanner. Solving ordinary differential
equations I. Springer Series in Computational Mathematics, 1987.

[19] E. Hairer and G. Wanner. Multistep-multistage-multiderivative methods
for ordinary differential equations. Computing (Arch. Elektron. Rech-
nen), 11(3):287–303, 1973.

[20] E. Hairer and G. Wanner. Solving ordinary differential equations II.
Springer Series in Computational Mathematics, 1991.

[21] E. Hopf. The partial differential equation ut + uux = µuxx. Communi-
cations on Pure and Applied Mathematics, 3:201–230, 1950.

[22] P. Kaps. Rosenbrock-type methods. In G. Dahlquist and R. Jeltsch, ed-
itors, Oberwolfach 28.6.–4.7.1981, Bericht Nr. 9. Institut für Geometrie
und Praktische Mathematik, RWTH Aachen, 1981.

[23] J. Kim. Phase-field models for multi-component fluid flows. Communi-
cations in Computational Physics, 12(3):613–661, 2012.

26

[24] S. Klainerman and A. Majda. Singular limits of quasilinear hyperbolic
systems with large parameters and the incompressible limit of compress-
ible fluids. Communications on Pure and Applied Mathematics, 34:481–
524, 1981.

[25] V. Kučera, M. Lukáčová-Medvid’ová, S. Noelle, and J. Schütz. Asymp-
totic properties of a class of linearly implicit schemes for weakly com-
pressible Euler equations. Numerische Mathematik, 150:79–103, 2021.

[26] H. Liu and J. Zou. Some new additive Runge–Kutta methods and
their applications. Journal of Computational and Applied Mathemat-
ics, 190(1-2):74–98, 2006.

[27] A. Moradi, A. Abdi, and J. Farzi. Strong stability preserving second
derivative general linear methods with Runge-Kutta stability. Journal
of Scientific Computing, 85(1):Paper No. 1, 39, 2020.

[28] A. Moradi, A. Abdi, and G. Hojjati. Implicit-explicit second derivative
general linear methods with strong stability preserving explicit part.
Applied Numerical Mathematics, 181:23–45, 2022.

[29] S. Noelle, G. Bispen, K.R. Arun, M. Lukáčová-Medvid’ová, and C.-
D. Munz. A weakly asymptotic preserving low Mach number scheme
for the Euler equations of gas dynamics. SIAM Journal on Scientific
Computing, 36:B989–B1024, 2014.

[30] L. Pareschi and G. Russo. Implicit-explicit Runge-Kutta schemes for stiff
systems of differential equations. Recent Trends in Numerical Analysis,
3:269–289, 2000.

[31] L. Pareschi and G. Russo. Implicit–explicit Runge–Kutta schemes and
applications to hyperbolic systems with relaxation. Journal of Scientific
computing, 25:129–155, 2005.

[32] J. Schütz and S. Noelle. Flux splitting for stiff equations: A notion on
stability. Journal of Scientific Computing, 64(2):522–540, 2015.

[33] J. Schütz and D. Seal. An asymptotic preserving semi-implicit multi-
derivative solver. Applied Numerical Mathematics, 160:84–101, 2021.

27

[34] J. Schütz, D. C. Seal, and J. Zeifang. Parallel-in-time high-order multi-
derivative IMEX solvers. Journal of Scientific Computing, 90(54):1–33,
2022.

[35] D. C. Seal, Y. Güçlü, and A. Christlieb. High-order multiderivative
time integrators for hyperbolic conservation laws. Journal of Scientific
Computing, 60:101–140, 2014.

[36] J. Zeifang and J. Schütz. Implicit two-derivative deferred correction
time discretization for the discontinuous Galerkin method. Journal of
Computational Physics, 464:111353, 2022.

[37] J. Zeifang, J. Schütz, and D. Seal. Stability of implicit multiderivative
deferred correction methods. BIT Numerical Mathematics, 2022.

[38] J. Zeifang, A. Thenery Manikantan, and J. Schütz. Time parallelism
and Newton-adaptivity of the two-derivative deferred correction dis-
continuous Galerkin method. Applied Mathematics and Computation,
457:128198, 2023.

28

UHasselt Computational Mathematics Preprint Series

www.uhasselt.be/cmat

All rights reserved.

