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Abstract

In this study, we introduce a multi-step multi-derivative predictor-corrector time integration scheme analo-
gous to the schemes in Schütz et al. (J Sci Comput 90(54):1–33, 2022), incorporating a multi-step quadrature
rule. We conduct stability analysis up to order eight and optimize the schemes to achieve A(α)-stability
for large α. Numerical experiments are performed on ordinary differential equations exhibiting diverse stiff-
ness conditions, as well as on partial differential equations showcasing non-linearity and higher-order terms.
Results demonstrate the convergence and flexibility of the proposed schemes across diverse situations.
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1. Introduction

In this work, we consider the numerical solutions of initial value problems of form

y′(t) = φ(y), t ∈ (0, Tend)

y(0) = y0. (1)

There are plenty of schemes in literature to find the numerical solution of the above system (1), which can
be broadly categorized into explicit and implicit schemes. Implicit schemes are chosen over explicit schemes
for better stability and less severe time-step restriction properties, especially when it comes to solving stiff
problems. Implicit schemes, while advantageous in certain aspects, come with drawbacks. These include
the need to solve nonlinear equations, potentially leading to added errors in the solution. Moreover, implicit
schemes often demand longer execution times and encounter additional bottlenecks when solving larger
systems.

In classical implicit time integration methods found in literature, the numerical scheme mostly relies on
the first temporal derivative (y′) of the problem. For one-derivative schemes, the orders of consistency can
only be increased by incorporating additional stages or steps to the numerical scheme. At the same time, the
addition of intermediate stages ends up with an arduous task of solving involved order conditions. In order
to achieve higher-order schemes with fewer stages, one can include higher-order derivatives of the problem
(1) to the scheme, which results in multi-derivative time stepping methods [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].
In this paper, we focus on two-derivative schemes, which necessitate the computation of the second-order
derivative of the problem (1)

y′′(t) = φ′(y)y′(t) = φ′(y)φ(y) =:
.

φ(y).

In [11], the authors have introduced a fourth-order two-derivative asymptotic preserving IMEX time
stepping scheme for solving stiff ODEs, which was structured in a predictor-corrector fashion. Later in
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[12], the schemes were extended to higher-orders with parallel-in-time property, termed as Hermite-Birkhoff
Predictor-Corrector (HBPC(q,kmax)) schemes, where q is the maximum achievable order and kmax is the
number of correction steps used. The shemes in [12] were optimized in [13] to have A(α) stability with α
close to 900. The optimized HBPC schemes were applied to the discontinuous Galerkin method in [14, 15].
Explicitness-preserving IMEX-HBPC(q,kmax) schemes were presented in [16] recently.

In order to achieve higher-orders, authors have used a higher-order quadrature rule in [12], which utilizes
the intermediate stage values, see [12, Eq. (8)]. Generally, methods involving more intermediate implicit
stages require longer execution time. Schemes with extended computational time pose a drawback when
implemented for expansive systems, such as the Euler equations, Navier-Stokes equations, and more. One
strategy for addressing this situation could involve investigating higher-order schemes that demand fewer
intermediate implicit stages. Hence, an evident direction is to explore schemes involving multiple steps.
Several multi-step multi-derivative schemes have been documented in the literature, including Brown’s
schemes [17, 18], second derivative BDF schemes [19], strong stability preserving schemes [20, 10], schemes
for chemical stiff equations [21], general linear methods [22, 23] and more.

To integrate the concept of a multi-step method for HBPC(q,kmax) schemes, we will explore a higher-
order quadrature rule that leverages the previously computed solutions rather than relying solely on in-
termediate stages. This results in m-Step Hermite-Birkhoff Predictor-Corrector schemes abbreviated as
mS-HBPC(q,kmax). The parameter m represents the number of steps used from the previous time instances,
q is the maximum achievable order of convergence, and kmax is the maximum number of correction steps.
The 1S-HBPC(4,kmax) is none other than the serial HBPC(4,kmax) scheme in [12]. In this paper we analyze
the stability properties and convergence of the mS-HBPC(q,kmax) schemes for orders up to eight (up to
three-step schemes).

The paper is structured as follows: In Sec. 2, the algorithm for the mS-HBPC(q,kmax) schemes are
presented, followed by the study of their stability properties in Sec. 3. The optimization of the mS-
HBPC(q,kmax) schemes for A(α)-stability are discussed in further subsections of Sec. 3. Numerical results
of the schemes on various test-cases that includes ordinary and partial differential equations, are shown in
Sec. 4. Finally, the paper is concluded and an outlook is given in Sec. 5.

2. Numerical Scheme

We consider a fixed time-step for the scheme throughout the paper. For a given number of total time-steps
N , we have

∆t :=
Tend
N

.

The approximate solution at time instance

tn := n∆t, 0 ≤ n ≤ N,

is denoted as yn ≈ y(tn). The mS-HBPC(q,kmax) scheme and the HBPC(q,kmax) schemes from [12] utilize
an approach similar to the spectrally deferred correction (SDC) method [24, 25, 26]. These schemes are
designed to initiate with a predicted solution, represented by y[0],n at tn. Then the predicted solution is
subsequently refined through a sequence of correction steps. The kth corrected solution at tn is denoted
as y[k],n. At time tn+1, the solution is updated with the highest corrected solution y[kmax],n. The detailed
algorithm is defined below:

Algorithm 1 (mS-HBPC(q,kmax)). Given the solutions yn, yn−1, yn−2, . . . , yn+1−m, the updated solution at
tn+1 for n ≥ m− 1, is computed using the following prediction and correction steps. The predicted solution
is computed using an implicit second-order Taylor scheme.

1. Predict. Solve the following expression for y[0],n:

y[0],n := yn + ∆tφ[0],n − ∆t2

2

.

φ
[0],n

. (2)
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2. Correct. Solve the following expression for y[k+1],n, for each 0 ≤ k < kmax:

y[k+1],n := yn + ∆tθ1

(
φ[k+1],n − φ[k],n

)

− ∆t2

2
θ2

(
.

φ
[k+1],n

−
.

φ
[k],n

)
+ I

(
φn+1−m, . . . , φn−1, φn, φ[k],n

)
, (3)

where the qth order quadrature rule (see Tab. 1) is given by

I (ψ1, ψ2 . . . , ψm, ψm+1) := ∆t
m+1∑

i=1

b
(1)
i ψi + ∆t2

m+1∑

i=1

b
(2)
i

.

ψi.

Note that θ1 and θ2 are constants; more details are given in Remark. 4.

3. Update. Setting the solution at the final corrected step as the updated solution:

yn+1 := y[kmax],n.

Remark 1. In order to start up the procedure, the mS-HBPC(q,kmax) scheme requires solutions at the first
m time instances,

y` := y(t`), 0 ≤ ` ≤ m− 1,

which are either given or found using an appropriate solver. For the numerical results in this paper, we
use the explicit solutions of the test problems, if available, for the start-up procedure. In cases where ex-
plicit solutions are inaccessible, we employ the MATLAB solver ode15s [27] to compute a highly accurate
solution.

Remark 2. The quadrature rule for the mS-HBPC(q,kmax) scheme is derived by fitting a Hermite–Birkhoff
polynomial interpolant through the uniformly spaced time instances tn+1, tn, tn−1, . . . , tn+1−m and integrating
the result from tn to tn+1. This constructions results into a quadrature rule,

∫ tn+1

tn
ψ(y(t))dt = I

(
ψ(y(tn+1−m), . . . , ψ(y(tn−1), ψ(y(tn), ψ(y(tn+1))

)
+O(∆tq+1).

The m+1 points gives the Hermite–Birkhoff polynomial of order 2m+1, which gives an integral approximation
of order (2m+ 1) + 2 =: q + 1. Hence, we have

q = 2(m+ 1).

The quadrature rules for the schemes up to order eight are given in Tab. 1.

Remark 3. Similar to the results from [11, 12], in every iteration, for each correction step k ≤ kmax, the
mS-HBPC(q,kmax) provides an approximation to y(tn+1) with an order of accuracy of min {q, 2 + k}, i.e.

y(tn+1) = y[k],n +O(∆tmin{q,2+k}).

Convergence results are shown numerically in Sec. 4.1.

Remark 4. The parameters (θ1, θ2) ∈ R2 utilized in the correction step (3) are the tuning parameters aimed
at optimizing the algorithm to ensure better stability properties. Sec. 3 of the paper delves into the analysis
of stability and the optimization of parameters (θ1, θ2).
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Scheme Quadrature rule

b(1) b(2)

1S-HBPC(4,kmax)[11] 1
2

1
2

1
12 − 1

12

2S-HBPC(6,kmax) 11
240

128
240

101
240

3
240

40
240 − 13

240

3S-HBPC(8,kmax) 1985
90720

12015
90720

42255
90720

34465
90720

489
90720

7263
90720

22977
90720 − 3849

90720

Table 1: The quadrature rules for the schemes up to order eight. The methodology for constructing these quadrature rules is
outlined in Remark. 2.

3. Stability Analysis

In this section, the linear stability of the mS-HBPC(q,kmax) method is analyzed using Dahlquist’s equa-
tion y′ = λy, where λ ∈ C. Define z := ∆tλ and the following functions:

R[0]
m (z) :=

2

2− 2z + z2
and R[0]

i (z) := 0, ∀i < m,

Pm(z) := 1 + b(1)
m z + b(2)

m z2 and Pi(z) := b
(1)
i z + b

(2)
i z2, ∀i < m,

S(z) := {b(1)
m+1 − θ1}z + {b(2)

m+1 +
θ2

2
}z2 and T (z) := 1− θ1z +

θ2

2
z2.

For a kth correction step, define the functions R[k]
` for 1 ≤ ` ≤ m such that

y[k] =:
m−1∑

i=0

R[k]
m−i(z) y

n−i.

Apply the mS-HBPC(q,kmax) scheme as defined in Alg. 1 for the Dahlquist’s equation y′ = λy. The predicted
solution can be written as

y[0] =

m−1∑

i=0

R[0]
m−i(z) y

n−i = R[0]
m (z)yn.

Then for the kth correction step, we have

y[k] =
S(z)y[k−1] +

∑m−1
i=0 Pm−i(z) yn−i
T (z)

=
S(z)

∑m−1
i=0 R

[k−1]
m−i (z) yn−i +

∑m−1
i=0 Pm−i(z) yn−i

T (z)

=
m−1∑

i=0

S(z)R[k−1]
m−i (z) + Pm−i(z)
T (z)

yn−i =:
m−1∑

i=0

R[k]
m−i(z) y

n−i.

Hence the functions R[k]
` are recursively given by

R[k]
` (z) =

S(z)R[k−1]
` (z) + P`(z)
T (z)

for 1 ≤ ` ≤ m.

Therefore the updated solution at tn+1 can be obtained as

yn+1 = y[kmax] =
m−1∑

i=0

R[kmax]
m−i (z) yn−i

=:
m−1∑

i=0

Rm−i(z) yn−i. (4)

4



Assume a solution of type ys := rs to the difference equation Eq. (4) and substituting it in Eq. (4) leads to
the following polynomial of degree m,

rm −Rm(z) rm−1 −Rm−1(z) rm−2 · · · − R2(z) r −R1(z) = 0. (5)

If ri(z) are roots of the polynomial (5), then the stability of the scheme mandates each root ri(z) to have
an absolute value less than or equal to one.

Theorem 1. The multi-step HBPC schemes mS-HBPC(q,kmax) are zero-stable for any values of (θ1, θ2).

Proof. Substituting λ = 0 into the defined functions yields,

R[0]
m (z) = 1 and R[0]

i (z) = 0, ∀i < m,

Pm(z) = 1 and Pi(z) = 0, ∀i < m,

S(z) = 0 and T (z) = 1,

which are independent of (θ1, θ2) values. Therefore, we get

R[k]
` (z) =

{
1, ` = m,

0, ` 6= m.

for every k. Then the polynomial (5) is
rm − rm−1 = 0,

with roots ri ∈ {0, 1}, and hence their magnitude |ri| ≤ 1. Being the multiplicity of the root rm = 1 equal
to one completes the proof.

Define the function
Rmax(z) := max

i
{|ri(z)|} . (6)

Then the stability region for the numerical scheme is given by

Stability Region =
{
z ∈ C |Rmax(z) ≤ 1

}
, (7)

under the assumption that the polynomial (5) has only single roots. Since the scheme 1S-HBPC(4,kmax) is
the same as scheme HBPC(4,kmax) in [11], it has been shown already in [13] that the scheme is A(α)-stable,
and A-stable with optimized coefficients (θ1, θ2) =

(
1
2 ,

1
6

)
. The plots in Fig. 1 show the stability regions of

the 2S-HBPC(6,4) (left) and 3S-HBPC(8,6) (right) schemes with values θ1 and θ2 equal to one. The shaded
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Figure 1: Stability regions of 2S-HBPC(6,4) (left) and 3S-HBPC(8,6) (right) schemes with (θ1, θ2) = (1, 1).

regions in Fig. 1 show that the stability regions are bounded. To harness the advantage of an unconstrained
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time-step condition offered by an implicit scheme, it is crucial to possess a stability region that extends
infinitely, contrasting with the finite boundaries illustrated in Fig. 1. Hence, the tuning parameters θ1 and
θ2 are to be brought into service for expanding the stability region. In the following section, the tuning
parameters are optimized to obtain an A(α)-stable mS-HBPC(q,kmax) scheme. In this paper, we specifically
limit the optimization process to schemes 2S-HBPC(6,4) and 3S-HBPC(8,6).

3.1. Constraints on tuning parameters for A(α)-stability

Theorem 2. There exist positive (θ1, θ2) values such that the multi-step HBPC schemes 2S-HBPC(6,4) and
3S-HBPC(8,6) are A(α)-stable.

Proof. The objective is to determine conditions on tuning parameters by examining the absolute values of
the roots of the difference equation (4) as −∞ approaches. The complete proof of the theorem follows from
Lemma. 1 and Lemma. 2.

Remark 5. We use the Symbolic Math Toolbox in MATLAB [28] for solving/simplifying/deriving certain
equations/expressions in the paper due to their complexity. In particular,

• to find the roots, and their limits of the polynomials (8) and (9), in the proofs of Lemma. 1 and
Lemma. 2, respectively;

• to find the error constant C(θ1, θ2) defined in Sec. 3.2.1 and Sec. 3.2.2.

Remark 6 (Methodology for evaluating stability angle). We utilize the algorithm outlined in [13, Sec. 3]
to compute the stability angles for A(α)-stable mS-HBPC(q,kmax) schemes.

Lemma 1. The 2S-HBPC(6,4) scheme is A(α)-stable for any θ1 > 0 and θ2 ≥ 1.25868. The minimum
value of θ2 provided is rounded to five decimal places.

Proof. Begin with the polynomial equation in (5) for the 2S-HBPC(6,4) scheme

r2 −R2(z) r −R1(z) = 0. (8)

Its roots are given by

r1(z) =
R2(z)

2
+

√
R2

2(z)

4
+R1(z),

r2(z) =
R2(z)

2
−
√
R2

2(z)

4
+R1(z).

The limits of the roots r1(z) and r2(z) as z tends to −∞ result into functions that depends on θ2 only. It
is because θ2 occurs in the algorithm Alg. 1 with terms involving ∆t2, whereas θ1 pair up with ∆t terms.
Therefore, we can write

lim
z→−∞

r1(z) =: g1(θ2),

lim
z→−∞

r2(z) =: g2(θ2).

As we need to expand the stability region, conditions on θ2 can be found by analyzing the absolute values
of g1(θ2) and g2(θ2).

In Fig. 2a it is shown that |g2(θ2)| < 1 for all the given θ2 values whereas |g1(θ2)| < 1 only for values of
θ2 & 1.25868. Hence we have ∀θ2 ≥ 1.25868

lim
z→−∞

Rmax(z) < 1.

The stability angles for various (θ1, θ2) values are given in Tab. 2 for A(α)-stable 2S-HBPC(6,4). As
illustrated in Fig. 3 and Tab. 2, it is evident that the 2S-HBPC(6,4) scheme exhibits A(α)-stability for θ2

greater than or equal to 1.25868. The stability angle corresponding to the pair (θ1, θ2) = (1, 1.25868) is
83.64◦.
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(a) 2S-HBPC(6,4) scheme
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(b) 3S-HBPC(8,6) scheme
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Figure 2: Absolute values of the limits of the roots are plotted against different θ2 values. The value of θ2 for which
maxi |gi(θ2)| ≤ 1 is marked on the plot. This value of θ2 ensures A(α)-stability for the scheme.

Lemma 2. The 3S-HBPC(8,6) scheme is A(α)-stable for any θ1 > 0 and θ2 ≥ 3.84703. The minimum
value of θ2 provided is rounded to five decimal places.

Proof. Begin with the polynomial equation in (5) for the 3S-HBPC(8,6) scheme

r3 −R3(z) r2 −R2(z) r −R1(z) = 0. (9)

Here, we have a third degree polynomial and its roots can be found explicitly using Cardano’s formula for
cubic polynomials. The roots r1(z), r2(z) and r3(z) are not provided here due to their lengthy formulations.
Similar to 2S-HBPC(6,4), the limits of the roots r1(z), r2(z) and r3(z) as z tends to −∞ also result into
functions that depends on θ2 alone,

lim
z→−∞

rk(z) =: gk(θ2), 1 ≤ k ≤ 3.

The explicit limits of the roots are omitted here due to the extended nature of the expressions.
In Fig. 2b, it is shown that |g2(θ2)| < 1 and |g3(θ2)| < 1 for all the given θ2 values whereas |g1(θ2)| < 1

only for values of θ2 & 3.84703. Hence we have ∀θ2 ≥ 3.84703

lim
z→−∞

Rmax(z) < 1.

The stability angles for various (θ1, θ2) values are given in Tab. 2 for A(α)-stable 3S-HBPC(8,6). From Fig. 4
and Tab. 2, it is evident that the 3S-HBPC(8,6) scheme exhibits A(α)-stability for values of θ2 greater than
or equal to 3.84703. The stability angle corresponding to the pair (θ1, θ2) = (1, 1.25868) is 78.93◦.

The detailed analysis on (θ1, θ2) values for 2S-HBPC(6,4) and 3S-HBPC(8,6) schemes are given in
Sec. 3.2.

3.2. Optimization of the tuning parameters

When analyzing the stability angles in Tab. 2 for various (θ1, θ2) values with the minimum requirement
on the θ2 value for A(α)-stability, it is observed that there is an increase in the stability angle as we increase
θ1 keeping θ2 fixed, whereas a decrease in the stability angle as we increase θ2 keeping θ1 fixed. In this
section, we seek optimized tuning parameters that can minimize the one-step error when using a linear test
problem.

Consider the test problem
y′ = y, y(0) = 1,
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Figure 3: Stability region of 2S-HBPC(6,4) scheme for (θ1, θ2) = (1, 1.25868) with zoomed image on the right.

Im(z)
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Figure 4: Stability region of 3S-HBPC(8,6) scheme for (θ1, θ2) = (1, 3.84703) with zoomed image on the right.

which admits an explicit solution y(t) = et. The one-step error C(θ1, θ2,∆t) for an mS-HBPC(q,kmax)
scheme is defined as

C(θ1, θ2,∆t) :=

∣∣∣∣∣∣

em∆t −
(∑m−1

i=0 Ri+1(∆t)ei∆t
)

∆tq+1

∣∣∣∣∣∣
. (10)

3.2.1. 2S-HBPC(6,4) scheme

Begin with the error constant C(θ1, θ2), which is obtained by considering lim∆t→0 C(θ1, θ2,∆t). It is
given by

C(θ1, θ2) =

∣∣∣∣
1

6
θ4

1 −
101

360
θ3

1 +
10201

57600
θ2

1 −
1030301

20736000
θ1 +

743168407

139345920000

∣∣∣∣ . (11)

It can be noted that the error constant is independent of θ2. Therefore, it is plotted against various θ1 values
in Fig. 5a.

It can be seen from Fig. 5a that the error constant reaches its minimum value at θ1 ≈ 0.42083. Hence
we consider only values of θ1 starting from 0.42083 to obtain different stability angles.

Plot in Fig. 6 shows the one-step error C(θ1, θ2,∆t) versus timestep graph for various (θ1, θ2) pairs
corresponding to stability angles approximately equal to 77.85◦ (left) and 85◦ (right) respectively. It can
be observed from Fig. 6 that the one-step error C(θ1, θ2,∆t) corresponding to a given stability angle gives
a considerably minimal value for lowest (θ1, θ2) values. Hence, for an A(α)-stable 2S-HBPC(6,4) scheme we
fix θ2 at the minimum value of 1.25868 (rounded to five decimal places). To enhance the optimization of the
scheme, Fig. 8a illustrates the stability angles (α) across various θ1 values. It can be seen from that Fig. 8a
that the stability angle (α) increases with increased θ1 values.
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θ1 ↓ θ2 → 1.25868 1.5 2 2.5 3 3.5 4 4.5 5
0.5 78.9 78.2 77.3 76.8 76.5 76.3 76.2 76.2 76.2
0.6 80.1 79.3 78.3 77.7 77.3 77.1 77.0 76.9 76.9
0.7 81.2 80.4 79.2 78.6 78.2 77.9 77.8 77.7 77.6
0.8 82.1 81.3 80.1 79.4 78.9 78.7 78.5 78.3 78.3
0.9 82.9 82.1 80.9 80.2 79.7 79.3 79.1 79.0 78.9
1.0 83.6 82.8 81.6 80.8 80.3 80.0 79.8 79.6 79.5
1.1 84.3 83.5 82.3 81.5 81.0 80.6 80.3 80.2 80.0
1.2 84.8 84.0 82.9 82.1 81.5 81.2 80.9 80.7 80.6
1.3 85.2 84.5 83.4 82.6 82.1 81.7 81.4 81.2 81.1
1.4 85.6 85.0 83.9 83.1 82.6 82.2 81.9 81.7 81.5
1.5 85.9 85.3 84.3 83.6 83.0 82.6 82.3 82.1 82.0
1.6 86.2 85.7 84.7 84.0 83.4 83.0 82.8 82.5 82.4
1.7 86.5 85.9 85.0 84.3 83.8 83.4 83.1 82.9 82.8
1.8 86.6 86.2 85.4 84.7 84.2 83.8 83.5 83.3 83.1
1.9 86.8 86.4 85.6 85.0 84.5 84.1 83.9 83.6 83.5
2.0 87.0 86.6 85.9 85.3 84.8 84.5 84.2 83.9 83.8
2.1 87.1 86.8 86.1 85.6 85.1 84.8 84.5 84.2 84.1
2.2 87.2 86.9 86.3 85.8 85.4 85.0 84.7 84.5 84.4
2.3 87.3 87.0 86.5 86.0 85.6 85.3 85.0 84.8 84.6
2.4 87.4 87.2 86.7 86.2 85.8 85.5 85.2 85.0 84.9
2.5 87.5 87.3 86.8 86.4 86.0 85.7 85.5 85.3 85.1
2.6 87.6 87.4 86.9 86.6 86.2 85.9 85.7 85.5 85.3
2.7 87.6 87.5 87.1 86.7 86.4 86.1 85.9 85.7 85.5
2.8 87.7 87.5 87.2 86.8 86.5 86.3 86.1 85.9 85.7
2.9 87.8 87.6 87.3 87.0 86.7 86.4 86.2 86.1 85.9
3.0 87.8 87.7 87.4 87.1 86.8 86.6 86.4 86.2 86.1

1

θ1 ↓ θ2 → 3.84703 4.5 5 5.5 6 6.5 7 7.5 8
0.5 76.2 76.0 75.9 75.8 75.7 75.6 75.5 75.5 75.4
0.6 76.8 76.6 76.4 76.3 76.2 76.1 76.0 75.9 75.9
0.7 77.4 77.1 76.9 76.7 76.6 76.5 76.4 76.4 76.3
0.8 77.9 77.6 77.4 77.2 77.1 77.0 76.9 76.8 76.7
0.9 78.4 78.1 77.9 77.7 77.5 77.4 77.3 77.2 77.1
1.0 78.9 78.5 78.3 78.1 78.0 77.8 77.7 77.6 77.5
1.1 79.4 79.0 78.7 78.5 78.4 78.2 78.1 78.0 77.9
1.2 79.8 79.4 79.2 78.9 78.8 78.6 78.5 78.4 78.3
1.3 80.3 79.8 79.6 79.3 79.2 79.0 78.9 78.8 78.7
1.4 80.7 80.2 79.9 79.7 79.5 79.4 79.2 79.1 79.0
1.5 81.1 80.6 80.3 80.1 79.9 79.7 79.6 79.5 79.4
1.6 81.4 81.0 80.7 80.4 80.2 80.1 79.9 79.8 79.7
1.7 81.8 81.3 81.0 80.8 80.6 80.4 80.2 80.1 80.0
1.8 82.1 81.6 81.3 81.1 80.9 80.7 80.6 80.4 80.3
1.9 82.4 81.9 81.6 81.4 81.2 81.0 80.9 80.7 80.6
2.0 82.7 82.2 81.9 81.7 81.5 81.3 81.1 81.0 80.9
2.1 83.0 82.5 82.2 82.0 81.8 81.6 81.4 81.3 81.2
2.2 83.3 82.8 82.5 82.3 82.0 81.9 81.7 81.6 81.5
2.3 83.5 83.1 82.8 82.5 82.3 82.1 82.0 81.8 81.7
2.4 83.8 83.3 83.0 82.8 82.5 82.4 82.2 82.1 82.0
2.5 83.9 83.4 83.1 82.9 82.7 82.5 82.3 82.2 82.1
2.5 84.0 83.5 83.2 83.0 82.8 82.6 82.5 82.3 82.2
2.6 84.2 83.8 83.5 83.2 83.0 82.8 82.7 82.6 82.4
2.7 84.4 84.0 83.7 83.4 83.2 83.1 82.9 82.8 82.7
2.8 84.6 84.2 83.9 83.7 83.5 83.3 83.1 83.0 82.9
2.9 84.8 84.4 84.1 83.9 83.7 83.5 83.3 83.2 83.1
3.0 84.9 84.5 84.3 84.0 83.9 83.7 83.5 83.4 83.3

1

Table 2: Stability angles (in degrees) for various (θ1, θ2) values for A(α)-stable 2S-HBPC(6,4) (left) and 3S-HBPC(8,6) (right)
schemes, respectively. The values have been rounded to one decimal place.

(a) 2S-HBPC(6,4) scheme
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θ1 = 0.42083

θ1

C(
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2
)

(b) 3S-HBPC(8,6) scheme
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θ1

C(
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Figure 5: Error constant for sixth and eighth-order schemes plotted for various θ1 values. The value of θ1, for which C(θ1, θ2)
is minimum, is marked on the plot.

3.2.2. 3S-HBPC(8,6) scheme

Similar to the sixth-order scheme, the error constant C(θ1, θ2) for 3S-HBPC(8,6) scheme is given by

C(θ1, θ2) =

∣∣∣∣∣
1

6
θ6

1 −
6893

18144
θ5

1 +
237567245

658409472
θ4

1 −
1637551019785

8959636094976
θ3

1 +
11287639179378005

216751516409659392
θ2

1

− 15561139372690517693

1966369756868430004224
θ1 +

2747516956745302596230737

5351671930293119099496038400

∣∣∣∣∣. (12)

It can be observed from Fig. 5b that the error constant reaches its minimum value at θ1 ≈ 0.37957.
Hence we consider only values of θ1 starting from 0.37957 to obtain different stability angles.

Plots in Fig. 7 shows the one-step error C(θ1, θ2,∆t) versus timestep graph for various (θ1, θ2) pairs
corresponds to stability angles approximately equal to 75.45◦ (left) and 80◦ (right) respectively. Likewise
as in the sixth-order scheme, it can be noted from Fig. 7 that the one-step error C(θ1, θ2,∆t) corresponding
to a given stability angle gives a considerably minimal value for lowest (θ1, θ2) values. Therefore, to achieve
an A(α)-stable 2S-HBPC(6,4) scheme we fix θ2 at the minimum value of 3.84703 (rounded to five decimal
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(a) Stability angle (α)≈ 77.85◦
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θ1 = 0.65000 & θ2 = 3.00000

θ1 = 0.70000 & θ2 = 4.00000

(b) Stability angle (α)≈ 85◦
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θ1 = 2.30000 & θ2 = 4.00000

Figure 6: The one-step error C(θ1, θ2,∆t) for 2S-HBPC(6,4) scheme is plotted against different timesteps ∆t.

(a) Stability angle (α)≈ 75.45◦
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θ1 = 0.45000 & θ2 = 6.00000

θ1 = 0.50000 & θ2 = 7.50000

(b) Stability angle (α)≈ 80◦
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θ1 = 1.55000 & θ2 = 6.00000

θ1 = 1.65000 & θ2 = 7.50000

Figure 7: The one-step error C(θ1, θ2,∆t) for 3S-HBPC(8,6) scheme is plotted against different timesteps ∆t.

places). To enhance the optimization of the scheme, Fig. 8b illustrates the stability angles (α) across various
θ1 values. An increment in the stability angle (α) with increased θ1 values can be observed from Fig. 8b.

3.3. Optimized tuning parameters for numerical results

We found constraints on the tuning parameters in the preceding sections that minimize one-step errors
(10) and the error constant (11)(12) using a linear test problem. Consequently, the values obtained from
these procedures are employed for the numerical results in the forthcoming section. Some of these values
are presented in Tab. 3.

4. Numerical Results

For the convergence analysis, we calculate the Euclidean error denoted as ‖y − yh‖2, comparing the
approximate solution yh using the explicit solution y(t). Otherwise, a highly accurate solution is found
numerically for the error comparison. The error is calculated at a given final time Tend.

Definition 1. The unoptimizedmS-HBPC(q,kmax) schemes used in the numerical results refers to schemes
with tuning parameters (θ1, θ2) = (1, 1).

10



(a) 2S-HBPC(6,4) scheme with θ2 = 1.25868.

0 5 10 15
74

76

78

80

82

84

86

88

90

θ1

st
ab

il
it

y
an

gl
e

(α
)

(b) 3S-HBPC(8,6) scheme with θ2 = 3.84703.
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Figure 8: Stability angles α for the A(α)-stable sixth and eighth-order schemes plotted for varying θ1 values.

2S-HBPC(6,4) (θ2 = 1.25868)

Approx. stability angle (α) 77.85◦ 80.00◦ 85.00◦ 86.00◦ 87.00◦ 88.00◦ 89.00◦ 89.99◦

θ1 0.42083 0.60000 1.25000 1.52500 2.03750 3.31250 7.2000 17.0000

Error constant 1.05·10−4 2.77·10−4 7.88·10−2 2.47·10−1 1.13 · 100 1.16 · 101 3.52 · 102 1.25 · 104

3S-HBPC(8,6) (θ2 = 3.84703)

Approx. stability angle (α) 75.45◦ 80.00◦ 85.00◦ 86.00◦ 87.00◦ 88.00◦ 89.00◦ 89.99◦

θ1 0.37957 1.23750 3.05000 3.78750 4.98750 7.23750 13.0000 28.0000

Error constant 1.23·10−5 6.63·10−2 6.03 · 101 2.60 · 102 1.59 · 103 1.73 · 104 6.73 · 105 7.39 · 107

Table 3: Stability optimized tuning parameters for A(α)-stable 2S-HBPC(6,4) and 3S-HBPC(8,6) schemes.

4.1. Convergence

We consider the non-stiff ODE
y′(t) = −y− 5

2 , y0 = 1, (13)

for showing the convergence of the mS-HBPC(q,kmax) schemes. The explicit solution of the problem (13) is

y(t) =

(
y

7
2
0 −

7

2
t

) 2
7

.

The error is calculated at Tend = 0.25.
In Fig. 9, the convergence results are shown for 2S-HBPC(6,4) (top) and 3S-HBPC(8,6) (bottom) for

various correction steps k. The results are compared for unoptimized and A(α)-stable mS-HBPC(q,kmax)
schemes. It can be seen from Fig. 9 that the unoptimized (first column) and A(85o)-stable (third column),
2S-HBPC(6,4) (top) and 3S-HBPC(8,6) (bottom) schemes, clearly follows the trend of order increment
by one after each correction step. This observation provides evidence in favor of the theoretical order
of convergence of min{q, 2 + k} for a k-th correction step. However, for A(77.85◦)-stable 2S-HBPC(6,4)
(second column, top) and A(75.45◦)-stable 3S-HBPC(8,6) (second column, bottom) schemes, there is an
order increment by two until the second and third correction steps, respectively. This exception arises from
the dominance of O(∆t2) terms over O(∆t) terms in the correction steps for parameters θ1 � θ2. Eventually,
the schemes, 2S-HBPC(6,4) and 3S-HBPC(8,6) achieve their desired order of convergences six (kmax = 4)
and eight (kmax = 6), respectively.
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Figure 9: Convergence plots of the 2S-HBPC(6,4) (top) and 3S-HBPC(8,6) (bottom) schemes for a simple ODE (13). The
error is calculated at Tend = 0.25. Consult Tab. 3 for (θ1, θ2) values corresponding to the given stability angles.

4.2. Pareschi–Russo Problem

Here, we investigate the performance of mS-HBPC(q,kmax) schemes on stiff ODEs. The model problem
considered is a system of IVP given by

y′1(t) = −y2, y′2(t) = y1 +
sin(y1)− y2

ε
, y0 =

(π
2
, 1
)
, (14)

which was introduced in [29]. The error is calculated at Tend = 5, using a highly accurate solution found
numerically. To investigate the performance of the scheme across non-stiff and stiff equations, we vary the
stiffness parameter ε across different values, specifically ε = 1, ε = 10−2, and ε = 10−3.

In Fig. 10, the convergence plots for 2S-HBPC(6,4) (top) and 3S-HBPC(8,6) (bottom) with different
stability angles are shown for various stiffness parameters. It can be seen that the unoptimized scheme
becomes unstable as the problem becomes more stiff. For the non-stiff problem (ε = 1), all the schemes
exhibits their expected convergence order except the schemes A(77.85◦)-stable 2S-HBPC(6,4)and A(75.45◦)-
stable 3S-HBPC(8,6) that show some irregularities. This is a consequence of the additional decrease in their
error constants, which are specifically connected to their (θ1, θ2) values. When stiffness parameter ε = 10−2,
the convergence of A(α)-stable schemes with low stability angles becomes irregular when relatively large
timesteps are employed to solve the problem. As the timesteps decrease, they eventually attain their desired
convergence order. For extremely small stiffness parameters (ε = 10−3), the inconsistencies in convergence
order are noticeable over a wider range of time steps, particularly in schemes with lower stability angles. For
all specified stiffness parameters, it is notable that the A(α)-stable scheme exhibits smoother convergence
and achieves the intended convergence order as the stability angles increase. However, this improvement
comes at the cost of slight shifts in the error.
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Figure 10: Error of Pareschi–Russo problem (14) with 2S-HBPC(6,4) (top) and 3S-HBPC(8,6) (bottom) schemes at Tend = 5.
The dashed black thick line represents convergence orders six (top) and eight (bottom), respectively. Consult Tab. 3 for (θ1, θ2)
values corresponding to the given stability angles.

4.3. Van-der-Pol Equation

To analyze the convergence behavior of mS-HBPC(q,kmax) schemes on highly stiff problems, we consider
Van-der-Pol equation. It is given by

y′1(t) = y2, y′2(t) =
(1− y2

1)y2 − y1

ε
, y0 =

(
2,−2

3
+

10

81
ε

)
. (15)

The error is calculated at Tend = 0.5, using a refined solution found numerically. The stiffness parameters
are varied across different values, from ε = 10−1 to ε = 10−5, for the numerical investigations.

In Fig. 11, the convergence plots for 2S-HBPC(6,4) (top) and 3S-HBPC(8,6) (bottom) with different
stability angles are shown for various stiffness parameters. Similar to the Pareschi–Russo Problem, the
unoptimized scheme becomes unstable as the problem becomes more stiff. For the equation (15) with a
stiffness parameter ε = 10−1, both sixth and eighth-order mS-HBPC(q,kmax) schemes converge as expected,
maintaining their designated order, although with some error shifts observed for A(α)-stable schemes with
larger stability angles. When ε = 10−2, the sixth and eighth-order schemes demonstrate their expected
convergence rates for lower stability angles. However, there is a slight reduction in order as the stability
angle increases. In cases where the stiffness parameters are even smaller, such as ε = 10−3, 10−4, and 10−5,
the sixth and eighth-order A(α)-stable schemes exhibit the desired convergence order for larger timesteps.
However, as the timestep decreases, there’s a noticeable reduction in order. Although the schemes with
larger stability angles showcase significant error shifts in the plot for larger timesteps, the errors diminish
in accordance with their respective convergence orders.
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4.4. Viscous Burgers’ equation

Here, we consider the viscous Burgers’ equation to test the A(α)-stable mS-HBPC(q,kmax) schemes on
partial differential equations. It is given by

∂tu+ ∂x

(
u2

2

)
= ∂2

xxu, u0(x) =
1− cos(2x)

2
, (16)

where x ∈ [0, 2π] with periodic boundary conditions. The equation (16) has an explicit exact solution
computed using Hopf-Cole transformation [30]. The spatial domain is discretized into a grid consisting of
200 elements with a eighth-order finite difference setting. The error is calculated at Tend = 0.5.

In Fig. 12, the convergence plots for A(α)-stable 2S-HBPC(6,4) (left) and 3S-HBPC(8,6) (right) are
shown for different stability angles. The sixth-order A(α)-stable schemes exhibit desired order of convergence
for all the given stability angles. The eight-order A(α)-stable schemes achieves desired order of convergence
for lower stability angles, whereas an order reduction is observed for larger stability angles. This phenomenon
is more likely to result from larger values of θ1 for 3S-HBPC(8,6) compared to 2S-HBPC(6,4), for the same
stability angles.

10−2 10−1
10−13

10−10

10−7

10−4

10−1

∆t

‖u
−
u
h
‖ 2

2S-HBPC(6,4)

A(77.85◦)-stable

A(85.00◦)-stable

A(87.00◦)-stable

A(89.00◦)-stable

10−2 10−1

∆t

3S-HBPC(8,6)

A(75.45◦)-stable

A(85.00◦)-stable

A(87.00◦)-stable

A(89.00◦)-stable

Figure 12: Convergence results of viscous Burgers’ equation (16) with 2S-HBPC(6,4) (left) and 3S-HBPC(8,6) (right) schemes
at Tend = 0.5. The dashed black thick line represents convergence orders six (left) and eight (right), respectively. Consult
Tab. 3 for (θ1, θ2) values corresponding to the given stability angles.

5. Conclusion and Outlook

In this work, we have presented a class of multi-derivative predictor-corrector time-stepping schemes
analogous to the schemes presented in [12], but with an underlying quadrature rule that is constructed using
a multi-step fashion. However, the initial schemes are found not to be A(α)-stable. Therefore, the schemes
have been analyzed and optimized for better stability properties.

It has been found that the 2S-HBPC(6,4) and 3S-HBPC(8,6) schemes are A(α)-stable for any values of
θ2 greater than or equal to 1.25868 and 3.84703, respectively. These threshold values have been fixed for θ2

as they give the minimum one-step error for a fixed stability angle. Similarly, lower limit of θ1 = 0.42083 for
the 2S-HBPC(6,4) scheme and θ2 = 0.37957 for the 3S-HBPC(8,6) scheme have been proposed by analyzing
the error constant C(θ1, θ2). Therefore, schemes can be designed to have higher stability angles for an
increased value of θ1. In Tab. 3, a selection of θ1 values corresponding to specific stability angles (α) have
been presented.

Convergence of the 2S-HBPC(6,4) and 3S-HBPC(8,6) schemes have been shown numerically. For non-
stiff ordinary differential equations, the A(α)-stable schemes converge with their expected rates, particularly
demonstrating minimal error at lower stability angles. The A(α)-stable schemes gradually converge towards
their expected order of convergence in stiff problems. In contrast, a reduction in the order of convergence has
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been observed in very stiff problems. However, the unoptimized schemes were unstable for stiff problems.
For higher-order non-linear partial differential equations, 2S-HBPC(6,4) scheme has exhibited the desired
convergence order for all the given stability angles, whereas 3S-HBPC(8,6) scheme has exhibited desired
order of convergence for lower stability angles.

As a future work, we are interested in combining the scheme with discontinuous Galerkin (DG) spatial
discretization and studying the performance of the schemes over Navier-Stokes equations. An efficient scheme
is paramount when the vast run time requirement for larger systems such as Navier-Stokes equations is con-
cerned. Therefore, another possible direction for future investigation would be to utilize the parallelizability
of the scheme across the correction steps and, hence, to implement a parallel-in-time mS-HBPC(q,kmax)
scheme.
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