PAIN IN EUROPE XIV

14TH CONGRESS OF THE EUROPEAN PAIN FEDERATION EFIC®

24-26 APRIL 2025 | LYON, FRANCE

EFIC-CONGRESS.ORG #EFIC2025

EXERCISE AND HEART RATE VARIABILITY IN CHRONIC

MUSCULOSKELETAL PAIN:

A SYSTEMATIC REVIEW

T. MEUS ^{1,2}, J. V. EETVELDE ¹, MEUWISSEN , M. MEEUS , D. BOULLOSA , J. VERBRUGGHE *, A. TIMMERMANS *

- 1 Faculty of Rehabilitation Sciences and Physiotherapy REVAL Institute, Hasselt University, Diepenbeek, Belgium
- 2 Faculty of Medicine and Health Sciences MOVANT Research Group, Antwerp University, Antwerp, Belgium
- 3 Faculty of Physical Activity and Sports Sciences, University of León, León, Spain

INTRODUCTION

Chronic musculoskeletal pain (CMP) is a complex condition ^{1,2,3}that affects **autonomic function**, often leading to altered heart rate variability (HRV)

! HRV matters because:

- Low HRV is associated with higher pain sensitivity, increased stress, and poor overall health
- Improving HRV could support better pain management and overall well-being 5

III-D2.W.01

This systematic review explored how different exercise interventions influence HRV in individuals with CMP 8,9

Objectives:

- Examine the impact of various training modalities
- Identify effective strategies for improving autonomic function
- Inform future therapeutic approaches for CMP management

METHOD

Databases searched up to June 15, 2024: PubMed, Web of Science, and Cochrane Library

- Inclusion criteria: population; Adults (18-65) with CMP, Intervention; Exercise programs ≥ 4 weeks, and Outcome measure; Heart rate variability, assessed preand post-intervention
- Review process: Two independent reviewers conducted study selection, data extraction, and risk of bias assessment using Cochrane RoB-2 and ROBINS-I
- Data analysis & reporting: Exercise interventions were detailed using the Consensus on Exercise Reporting Template (CERT), effect sizes were calculated to quantify HRV changes, and certainty of evidence was assessed using the GRADE framework

RESULTS

Study overview:

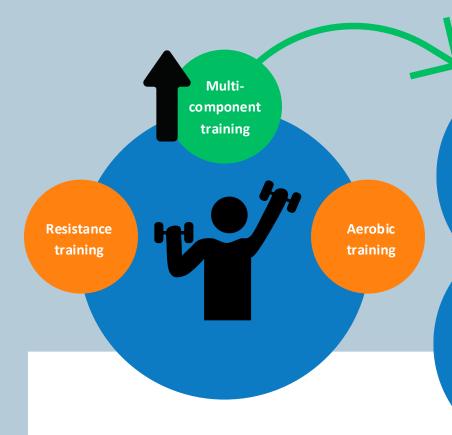
10 studies included (5 randomized, 5 non-randomized controlled trials)

Total participants: 277 adults with CMP

Exercise duration: 4 to 24 weeks

Types of exercise interventions:

- Resistance training
- Aerobic training
- Multi-component training \$\frac{1}{24}\$ + \$\frac{1}{6}\$


Key findings: significant within-group improvements in HRV, especially in:
Vagal modulation at rest (indicative of better autonomic function)

▲ Limitations: Variability in HRV assessment protocols and differences in exercise modalities made direct comparisons challenging

Certainty of evidence:

Low to moderate → Standardized methodologies needed for future research

HRV considerations Detailed reporting of Bias Risk of Bias

HF power (d = 0.53-1.90)

Increased
Parasympathetic
activity

LF power (d = -0.27 to -1.94)

REFERENCES

timo.meus@uhasselt.be

GBD. Lancet. 2020.¹, Hartvigsen et al. Lancet. 2018.², Arendt-Nielsen et al. Pain. 2018.³, Tracy LM et al. Auton Neurosci. 2016.⁴, Koenig J et al. Pain Med. 2016.⁵, Circulation. 1996.⁶, Geneen LJ et al. Cochrane. 2017.⁷, Routledge FS et al. Can J Cardiol. 2010.⁸, Kingsley JD et al. J Strength Cond Res. 2010.⁹

We thank Hasselt University (Special Research Fund) and the Research Foundation Flanders (FWO) for their support.