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FINDING THE BEST MICROSCO

To understand biological processes, scientists study a variety of model systems ranging
from single cells, tissue cultures, spheroids, and organs, to whole organisms. Each model
system offers specific insights, helping scientists to address unique questions. Fluorescent
labels can be genetically inserted to target subcellular structures. The labels and the
excitation light, however, can affect or even harm the samples. It is often crucial for live-cell
applications to use the smallest amounts of label and light to keep experimental conditions
as close to nature as possible.

This necessity for gentleness contrasts with the need for spatial and temporal resolution
in live-cellimaging. So, researchers must compromise. A common strategy to gain higher
imaging speeds is to use larger pixels, which sacrifices achievable resolution; and an
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increase in resolution reducesimaging speed and often exposes the sample to more light.
In this “Devil’s Triangle” - speed, resolution, and sensitivity — improving one parameter
causes the others to suffer. These compromises become even more important as sample
volumes and time ranges of physiologically relevant studies keep increasing, which
potentially exposes the sample to higher dosages of light. Consequently, a method’s depth
performance —its ability to image deep inside thicker samples - must also be considered.

In laboratories and imaging core facilities, scientists can often choose from several
different fluorescence microscopy technologies, each providing a unique set of advantages
and weaknesses. This poster aims to provide a quick guide to selecting the best method for
answering your specific scientific question.
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Another laser point-scanning approach: Here, it takes two or more photons
to excite flucrophores, which only occurs at the focal spot, resulting in
optical sectioning. The infrared excitation wavelengths allow for imaging at
great depth, down to several millimeters into the tissue.
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Stimulated Emission Depletion microscopy is a laser point-scanning method
in which one laser line excites the dye at the focal spot, while a second laser
of longerwavelength suppresses emission in an outer donut. This combination
currently achieves the highest possible imaging resolution. The required
high-illumination intensities and acquisition times make it hard to apply this
technique to dynamic processes in living samples.
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