Title
PICaSSo: Plasmon-Induced Catalysis for Stimulating the Solar-powered reverse water gas shift reaction (Research)
Abstract
The reverse water-gas shift rWGS reaction can effectively convert CO2 into CO, a crucial building block for the chemical industry. While this endothermic reaction is typically performed at high temperatures, photocatalysis is presented as a low-temperature alternative. PICaSSo will focus on
plasmon catalysis: Through localized surface plasma resonance (LSPR), a collective oscillation of conduction electrons at the surface of metal nanoparticles (NP), can increase yield and improve local control of chemical reactions. NPs with LSPR can give rise to three beneficial effects: Near-field reinforcement, excitation of load carriers and local heat generation. To date, it is not known which of these are decisive, to what extent they contribute, and how the composition of the catalyst and nanotechnology can lead to a more effective rWGS reaction. Our goal is to identify the decisive contribution to plasmon-induced catalytic rWGS reaction by specially designed plasmonic POIs and then quantify them via a unique reactor with integrated sensors that measure reaction temperature locally. The scientific findings thus obtained will lead to design rules to develop new generations of catalysts with improved performance, increased durability, and cost-effectiveness by using more widely available metals and optimized plastic metal carrier interactions.
Period of project
01 January 2024 - 31 December 2027