The research activities of the HyMaD group focus on the design, synthesis, and characterization of hybrid organic-inorganic perovskites towards enhanced material stability and improved optoelectronic properties.

Background Background

The HyMaD expertise group seeks to leverage knowhow in organic and inorganic chemistry that has been built up over the past 8 years and is supported by the established expertise in organic semiconductors and inorganic energy materials within MATCHEM, to design and synthesize hybrid materials tailored towards various optoelectronic applications (solar cells, detectors, LEDs, transistors). The ultimate goal is to gain a high level of control over the design of the hybrid materials such that these can be custom-made for a specific application. These activities are strongly embedded in the Institute for Materials Research (imo-imomec) of Hasselt University, facilitating interaction with materials and device physics experts as well as engineers and providing access to state-of-the-art equipment.

Research lines

Our group is mainly focusing on the design, synthesis, and characterization of novel hybrid perovskites of different structural dimensionalities (3D, 2D, 1D, 0D). Using the extensive background in organic semiconductors build up over the past 25 years in the Chemistry Department at UHasselt, we design and synthesize organic cations for use in the hybrid perovskites in order to on the one hand enhance their intrinsic stability and on the other hand obtain synergistic (opto-)electronic properties between the organic and inorganic components. The integration in the Institute for Materials Research (imo-imomec) provides access to state-of-the-art device fabrication and (optoelectronic) characterization tools. All projects are conducted in close collaboration with Materials Physics colleagues to unravel the photophysics of the materials.


Obtaining synergy between the organic and inorganic components

Through the design of organic cations for use in 2D and 1D hybrids, we aim to obtain hybrid materials where the organic component plays a direct role in the optical and electronic properties. We are experienced in the synthesis of organic cations containing an extended conjugated system (carbazole, pyrene, BTBT, oligothiophenes,...) for incorporation into hybrids.

Stabilization (2)

Enhancing the intrinsic material stability

Hybrid perovskites are sensitive to a variety of stress factors such as humidity, elevated temperature, and (intense) light. We aim to determine strategies to enhance the intrinsic material stability by tuning the molecular structure of the organic component.


Designing organic molecules for use as interlayers

In collaboration with the Thin-Film PV group at Energyville, we design and apply organic molecules as interlayers at the interfaces between the perovskite active layer and the electron/hole transporting layers of the solar cells in order to obtain devices with increased performance and stability.


Hybrid perovskites towards water splitting

Within the CleanH2 project, the HyMaD group is involved in the design and synthesis of perovskite materials for tandem solar cell devices to be integrated into a solar-driven water-splitting system.




How can we meet a continuous growing energy demand and how to do so while reducing our environmental carbon footprint?

Logo PROCEED No Filling BLACK Erik


This project aims to strengthen the perovskite research for solar cells and broaden the application field of the promising material towards other industries.



Tailored crystals on-demand: gaining a full understanding of the crystallization of low-dimensional hybrid perovskites



Maufort, Arthur; Cerdá, Jesús; Van Hecke, Kristof; Deduytsche, Davy; Verding, Arne; Ruttens, Bart; Li, Wei; Detavernier, Christophe; Quarti, Claudio; Lutsen, Laurence; Vanderzande, Dirk; Beljonne, David; Van Gompel, Wouter. "Elucidating the Non-Covalent Interactions that Trigger Interdigitation in Lead-Halide Layered Hybrid Perovskites" ACS Inorganic Chemistry; 2024 (DOI: 10.1021/acs.inorgchem.3c04536)


Zhang, X.; Eurelings, S.; Bracesco, A.; Song, W.; Lenaers, S.; Van Gompel, W.; Krishna, A.; Aernouts, T.; Lutsen, L.; Vanderzande, D.; Creatore, M.; Zhan, Y.; Kuang, Y.; Poortmans, J.. "Surface Modulation via Conjugated Bithiophene Ammonium Salt for Efficient Inverted Perovskite Solar Cells" ACS Appl Mater Interfaces; 2023 (DOI: 10.1021/acsami.3c08119)

Boeije, Y.; Van Gompel, W. T. M.; Zhang, Y.; Ghosh, P.; Zelewski, S.; Maufort, A.; Roose, B.; Ying Ooi, Z.; Chowdhury, R.; Devroey, I.; Lenaers, S.; Tew, A.; Dai, L.; Dey, K.; Salway, H.; Friend, R. H.; Sirringhaus, H.; Lutsen, L.; Vanderzande, D.; Rao, A.; Stranks, S. D.. "Tailoring Interlayer Charge Transfer Dynamics in 2D Perovskites with Electroactive Spacer Molecules" Journal of the American Chemical Society; 2023 (DOI: 10.1021/jacs.3c05974)

Van Gompel, Wouter T.M.; Lutsen, Laurence; Vanderzande, Dirk. "2D and quasi-2D hybrid perovskites containing organic cations with an extended conjugated system: opportunities and challenges" Journal of Materials Chemistry C.; 2023 (DOI: 10.1039/D3TC02553E)

Caiazzo, Alessandro; Maufort, Arthur; van Gorkom; Bas T., Remmerswaal, Willemijn H. M.; Ferrer Orri, Jordi; Li, Junyu; Wang, Junke; Van Gompel, Wouter T. M.; Van Hecke, Kristof; Kusch, Gunnar; Oliver, R.A.; Ducati, Caterina; Lutsen, Laurence; Wienk, Martijn M.; Stranks, Samuel D.; Vanderzande, Dirk; Janssen, René A. J.. "3D Perovskite Passivation with a Benzotriazole-Based 2D Interlayer for High-Efficiency Solar Cells" ACS Appl. Energy Mater.; 2023 (DOI: 10.1021/acsaem.3c00101)


Lammar, Stijn; Van Gompel, Wouter T.M.; Lenaers, Stijn; Mertens, Martijn; Boyen, Hans-Gerd; Desta, Derese; Hadipour, Afshin; Lutsen, Laurence; Vanderande, Dirk; Krishna, Anurag; Abdulraheem, Yaser; Aernouts, Tom; Poortmans, Jeff. "Organic ammonium iodide salts as passivation for buried interface enables efficient and stable NiOx based p-i-n perovskite solar cells". Journal of Materials Chemistry C; 2022 (DOI: 10.1039/D2TC04215K)

Denis, Paul-Henry; Mertens, Martijn; Van Gompel, Wouter T.M.; Maufort, Arthur; Mertens, Sigurd; Wei, Zimu; Van Landeghem, Melissa; Gielen, Sam; Ruttens, Bart; Deduytsche, Davy; Detavernier, Christophe; Lutsen, Laurence; Grozema, Ferdinand; Vandewal, Koen; Vanderzande, Dirk. "Quasi-2D Hybrid Perovskite Formation Using Benzothieno[3,2-b ]Benzothiophene (BTBT) Ammonium Cations: Substantial Cesium Lead(II) Iodide Black Phase Stabilization". Advanced Optical Materials; 2022 (DOI: 10.1002/adom.202200788)

Pitaro, Matteo; Pau, Ricardo; Duim, Herman; Mertens, Martijn; Van Gompel, W.T.M.; Portale, Giuseppe; Lutsen, Laurence; Loi, Maria Antonietta. "Tin-lead-metal halide perovskite solar cells with enhanced crystallinity and efficiency by addition of fluorinated long organic cation". Applied Physics Reviews; 2022, 9, 021407 (DOI: 10.1063/5.0083642)


Van Landeghem, M.; Van Gompel, W.T.M.; Herckens, R.; Lutsen, L.; Vanderzande, D.; Van Doorslaer, S.; Goovaerts, E. "Light-Induced Charge Transfer in Two-Dimensional Hybrid Lead Halide Perovskites". J. Phys. Chem. C.; 2021, 125, 33, 18317–18327 (DOI:10.1021/acs.jpcc.1c05005)

Denis, P.-H.; Mertens, M.; Van Gompel, W.T.M.; Van Hecke, K.; Ruttens, B.; D'Haen, J.; Lutsen, L.; Vanderzande, D., "Directing the Self-Assembly of Conjugated Organic Ammonium Cations in Low-Dimensional Perovskites by Halide Substitution". Chem. Mater.; 2021, 33, 13, 5177–5188 (DOI:10.1021/acs.chemmater.1c01221)

Van Gompel, W.T.M.; Herckens, R.; Mertens, M.; Denis, P.-H.; Ruttens, B.; D'Haen, J.; Van Hecke, K.; Lutsen, L.; Vanderzande, D., "Study on the dynamics of phase formation and degradation of 2D layered hybrid perovskites and low-dimensional hybrids containing mono-functionalized oligothiophene cations". ChemNanoMat; 2021, 7, 9, 1013-1019 (DOI:10.1002/cnma.202100169)


Van Gompel, W.T.M.; Herckens, R.; Denis, P.-H.; Mertens, M.; Gélvez-Rueda, M.; Van Hecke, K.; Ruttens, B.; D'Haen, J.; Grozema, F.; Lutsen, L.; Vanderzande, D., "2D layered perovskite containing functionalised benzothieno-benzothiophene molecules: formation, degradation, optical properties and photoconductivity". J. Mat. Chem. C.; 2020, 8, 7181-7188 (DOI:10.1039/D0TC01053G)

Gélvez-Rueda, M.; Van Gompel, W.T.M.; Herckens, R.; Lutsen, L.; Vanderzande, D.; Grozema, F., "Inducing Charge Separation in Solid State 2D Hybrid Perovskites Through the Incorporation of Organic Charge-Transfer Complexes". J. Phys. Chem. Lett.; 2020, 11, 3, 824-830 (DOI:10.1021/acs.jpclett.9b03746)


Van Gompel, W.T.M.; Herckens, R.; Van Hecke, K.; Ruttens, B.; D'Haen, J.; Lutsen, L.; Vanderzande, D., "Towards 2D layered hybrid perovskites with enhanced functionality: introducing charge-transfer complexes via self-assembly". Chem. Comm. 2019, 55, 2481-2484 (DOI:10.1039/C8CC09955C)

Marchal, N.; Van Gompel, W.T.M.; Gélvez-Rueda, M.C.; Vandewal, K.; Van Hecke, K.; Boyen, H.-G.; Conings, B.; Herckens, R.; Maheshwari, S.; Lutsen, L.; Quarti, Q.; Grozema, F.; Vanderzande, D.; Beljonne, D., "Lead-halide perovskites meet donor-acceptor charge-transfer complexes". Chem. Mater. 2019, 31, 17, 6880-6888 (DOI:10.1021/acs.chemmater.9b01289)


Van Gompel, W.T.M.; Herckens, R.; Van Hecke, K.; Ruttens, B.; D'Haen, J.; Lutsen, L.; Vanderzande, D., "Low‐dimensional hybrid perovskites containing an organic cation with an extended conjugated system: tuning the excitonic absorption features". ChemNanoMat 2018, 5, 3, 323-327 (DOI:10.1002/cnma.201800561)

Herckens, R.; Van Gompel, W.T.M.; Song, W.; Gélvez-Rueda, M.C.; Maufort, A.; Ruttens, B.; D'Haen, J.; Grozema, F.C; Aernouts, T.; Lutsen, L.; Vanderande, D., "Multi-layered hybrid perovskites templated with carbazole derivatives: optical properties, enhanced moisture stability and solar cell characteristics". J. Mat. Chem. A. 2018, 6, 45, 22899-22908 (DOI:10.1039/C8TA08019D)

Van Gompel, W.T.M.; Herckens, R.; Reekmans, G.; Ruttens, B.; D'Haen, J.; Adriaensens, P.; Lutsen, L.; Vanderzande, D., "Degradation of the Formamidinium Cation and the Quantification of the Formamidinium–Methylammonium Ratio in Lead Iodide Hybrid Perovskites by Nuclear Magnetic Resonance Spectroscopy". J. Phys. Chem. C. 2018, 112, 8, 4117–4124 (DOI:10.1021/acs.jpcc.7b09805)

Wetenschapstoren 11


Since December 2020, the HyMaD group has moved into the brand new Science Tower at UHasselt, together with all other MATCHEM colleagues! Take a look at the imo-imomec website to know more about our infrastructure and equipment.


Since the foundation of HyMaD, (inter)national partnerships have always been treated as a priority to support and valorize our research and service activities.

Would you like to discuss a new opportunity or get in touch with one of our partners? Do not hesitate to contact us.

Energyville Logo

Dr. Tom Aernouts; Thin-Film PV; Energyville

Xstruct Bio Inorgchem Logo2 Klein 1

Prof. dr. Kristof Van Hecke; XStruct; Ghent University

Tudelft Logo

Prof. dr. Ferdinand Grozema; Grozema group; TUDelft

Umons Logo

Dr. David Beljonne; Laboratory for Chemistry of Novel Materials (CMN); UMons

University Of Cambridge Logo.Wine

Prof. dr. Sam Stranks; Optoelectronic Materials and Device Spectroscopy Group (StranksLab); University of Cambridge

Eindhoven University Of Technology Tue Vector Logo

Prof. dr. René Janssen; Molecular Materials & Nanosystems; TU Eindhoven

Logo Maria Loi Group

Prof. dr. Maria Antonietta Loi; Photophysics and OptoElectronics Group; University of Groningen


Prof. dr. Henk Bolink; Molecular Opto-Electronic Devices group; University of Valencia

2560Px Logo Université De Lorraine.Svg

Dr. Sébastien Pillet; Crystallography, Magnetic Resonance and Modeling Laboratory (CRM^2); Université de Lorraine


Prof. dr. Wouter Van Gompel

20230905 WVG 24

Agoralaan Gebouw F, 3590 Diepenbeek, Belgium


Assistant Professor

Materials chemistry

Wetenschapstoren 27
Agoralaan Gebouw F, 3590 Diepenbeek, Belgium
Research centre