The research work carried out in the Computational Mathematics group is inspired by real life applications. The topics addressed here appear as mathematical models in energy, environmental engineering, aerodynamics, technology, geosystems, biosysstems, chemistry or phsysics, and include processes like flow, diffusion, reactions, transport, and involve multiple scales, or rapidly oscillating characteristics.

Cmat Cmat
Shoot17 Biomedische 39

Samenwerken met UHasselt-CMAT kan op verschillende manieren:

  • Gezamenlijke onderzoeksprojecten: onderzoek en ontwikkeling in nauwe samenwerking, gefinancierd door een derde partij (bv. FWO, VLAIO, H2020, EFRO …)
  • Technologie/kennis overdracht: u kan uw marktpositie versterken via licentiëring en toegang tot onze bestaande technologieën en expertise
  • Samenwerkingsverband: u kan samenwerken met UHasselt-BIOMED en gebruik maken van onze technologie (mogelijks) in combinatie met uw eigen technologie om een nieuw bedrijf op te zetten
  • Contractonderzoek

CMAT Members

CMAT guest-members

  • Carina Bringedal
  • Dr. Markus GAHN
  • Florian List
  • Dr. Koondanibha Mitra
  • Koondanibha Mitra
  • Lars von Wolff

Former CMAT members

  • Maikel Bosschaert
  • Alexander Jaust
  • Stefan Karpinski
  • Anh-Khoa Vo

News from/about the CMAT group

Computational Mathematics projects

Research projects of the CMAT group

Projects with external partners

Computational Mathematics preprints and theses

Computational Mathematics Preprints, 2021

Computational Mathematics Preprints, 2020

Computational Mathematics Preprints, 2019

UP-19-17: C. Bringedal, A conservative phase-field model for reactive transport (pdf, 301 KB)

UP-19-16: D. Landa-Marbàn, G. Bødtker, B.F. Vik, P. Pettersson, I.S. Pop, K. Kumar, F.A. Radu, Mathematical Modeling, Laboratory Experiments, and Sensitivity Analysis of Bioplug Technology at Darcy Scale

UP-19-15: D. Illiano, I.S. Pop, and F.A. Radu, An efficient numerical scheme for fully coupled flow and reactive transport in variably saturated porous media including dynamic capillary effects (pdf, 286 KB)

UP-19-14: S.B. Lunowa, I.S. Pop, and B. Koren, A Linear Domain Decomposition Method for Non-Equilibrium Two-Phase Flow Models (pdf, 312 KB)

UP-19-13: C. Engwer, I.S. Pop, T. Wick, Dynamic and weighted stabilizations of the L-scheme applied to a phase-field model for fracture propagation (pdf, 550 KB)

UP-19-12: M. Gahn, Singular limit for quasi-linear diffusive transport through a thin heterogeneous layer (pdf, 517 KB)

UP-19-11: M. Gahn, W. Jäger and M. Neuss-Radu, Correctors and error estimates for reaction-diffusion processes through thin heterogeneous layers in case of homogenized equations with interface diffusion (pdf, 641 KB)

UP-19-10: Václav Kučera, Mária Lukáčová-Medvid’ová, Sebastian Noelle and Jochen Schütz, Asymptotic properties of a class of linearly implicit schemes for weakly compressible Euler equations (pdf, 457 KB)

UP-19-09: Jochen Schütz and David Seal, An asymptotic preserving semi-implicit multiderivative solver (pdf, 348 KB)

UP-19-08: H. Hajibeygi, M. Bastidas Olivares, M. HosseiniMehr, I.S. Pop, M.F. Wheeler, A benchmark study of the multiscale and homogenization methods for fully implicit multiphase ow simulations with adaptive dynamic mesh (ADM) (pdf, 2,5 MB)

UP-19-07: J.W. Both, I.S. Pop, I. Yotov, Global existence of a weak solution to unsaturated poroelasticity (pdf, 1,6 MB)

UP-19-06: K. Mitra, T. Koppl, I.S. Pop, C.J. van Duijn, R. Helmig, Fronts in two-phase porous flow problems: effects of hysteresis and dynamic capillarity (pdf, 2,0 MB)

UP-19-05: D. Illiano, I.S. Pop, F.A. Radu, Iterative schemes for surfactant transport in porous media (pdf, 1,3 MB)

UP-19-04: M. Bastidas, C. Bringedal, I.S. Pop, F.A. Radu, Adaptive numerical homogenization of nonlinear diffusion problems (pdf, 4,9 MB)

UP-19-03: K. Kumar, F. List, I.S. Pop, F.A. Radu, Formal upscaling and numerical validation of fractured flow models for Richards' equation (pdf, 977 KB)

UP-19-02: M.A. Endo Kokubun, A. Muntean, F.A. Radu, K. Kumar, I.S. Pop, E. Keilegavlen, K. Spildo, A pore-scale study of transport of inertial particles by water in porous media (pdf, 5,8 MB)

UP-19-01: Carina Bringedal, Lars von Wolff, Iuliu Sorin Pop, Phase field modeling of precipitation and dissolution processes in porous media: Upscaling and numerical experiments (pdf, 634 KB)

Ph. D. Theses

Koondanibha Mitra, Mathematical Complexities in Porous Media Flow, Hasselt University, Faculty of Sciences, September 2019

Computational Mathematics Preprints, 2018

UP-18-09 David Landa-Marbán, Gunhild Bødtker, Kundan Kumar, Iuliu Sorin Pop, Florin Adrian Radu, An upscaled model for permeable biofilm in a thin channel and tube (pdf, 501 KB)

UP-18-08: Vo Anh Khoa, Le Thi Phuong Ngoc, Nguyen Thanh Long, Existence, blow-up and exponential decay of solutions for a porous-elastic system with damping and source terms (pdf, 973 KB)

UP-18-07: Vo Anh Khoa, Tran The Hung, Daniel Lesnic, Uniqueness result for an age-dependent reaction-diffusion problem (pdf, 411 KB)

UP-18-06: Koondanibha Mitra, Iuliu Sorin Pop, A modified L-Scheme to solve nonlinear diffusion problems (pdf, 2,4 MB)

UP-18-05: David Landa-Marban, Na Liu, Iuliu Sorin Pop, Kundan Kumar, Per Pettersson, Gunhild Bodtker, Tormod Skauge, and Florin A. Radu, A pore-scale model for permeable biofilm: numerical simulations and laboratory experiments (pdf, 2,6 MB)

UP-18-04: Florian List, Kundan Kumar, Iuliu Sorin Pop and Florin A. Radu, Rigorous upscaling of unsaturated flow in fractured porous media (pdf, 983 KB)

UP-18-03: Koondanibha Mitra and Hans van Duijn, Wetting fronts in unsaturated porous media: the combined case of hysteresis and dynamic capillary (pdf, 681 KB)

UP-18-02: Xiulei Cao and Koondanibha Mitra, Error estimates for a mixed finite element discretization of a two-phase porous media flow model with dynamic capillarity (pdf, 740 KB)

UP-18-01: Klaus Kaiser, Jonas Zeifang, Jochen Schütz, Andrea Beck and Claus-Dieter Munz, Comparison of different splitting techniques for the isentropic Euler equations (pdf, 323 KB)

Ph. D. Theses

Alexander Jaust, Novel implicit unconditionally stable time-stepping for DG-type methods and related topics, Hasselt University, Faculty of Sciences, October 2018
Klaus Kaiser, A high order discretization technique for singularly perturbed differential equations, Hasselt University, Faculty of Sciences, September 2018

Computational Mathematics Preprints, 2017

UP-17-11: Jakub Wiktor Both, Kundan Kumar, Jan Martin Nordbotten, Iuliu Sorin Pop, Florin Adrian Radu, Linear iterative schemes for doubly degenerate parabolic equations (pdf, 377 KB)

UP-17-10: Carina Bringedal, Kundan Kumar, Effective behavior near clogging in upscaled equations for non-isothermal reactive porous media flow (pdf, 975 KB)

UP-17-09: Alexander Jaust, Balthasar Reuter, Vadym Aizinger, Jochen Schütz and Peter Knabner, FESTUNG: A MATLAB / GNU Octave toolbox for the discontinuous Galerkin method. Part III: Hybridized discontinuous Galerkin (HDG) formulation (pdf, 6,5 MB)

UP-17-08: David Seus, Koondanibha Mitra, Iuliu Sorin Pop, Florin Adrian Radu and Christian Rohde, A linear domain decomposition method for partially saturated flow in porous media (pdf, 1,6 MB)

UP-17-07: Klaus Kaiser and Jochen Schütz, Asymptotic error analysis of an IMEX Runge-Kutta method (pdf, 508 KB)

UP-17-06: Hans van Duijn, Koondanibha Mitra and Iuliu Sorin Pop, Travelling wave solutions for the Richards equation incorporating non-equilibrium effects in the capillarity pressure (pdf, 1,0 MB)

UP-17-05: Hans van Duijn and Koondanibha Mitra, Hysteresis and Horizontal Redistribution in Porous Media (pdf, 1,1 MB)

UP-17-04: Jonas Zeifang, Klaus Kaiser, Andrea Beck, Jochen Schütz and Claus-Dieter Munz, Efficient high-order discontinuous Galerkin computations of low Mach number flows (pdf, 5,3 MB)

UP-17-03: M.M. Bosschaert, S.G. Janssens, and Yu.A. Kuznetsov, Switching to nonhyperbolic cycles from codim-2 bifurcations of equilibria in DDEs

UP-17-02: Jochen Schütz, David C. Seal and Alexander Jaust, Implicit multiderivative collocation solvers for linear partial differential equations with discontinuous Galerkin spatial discretizations (pdf, 1,2 MB)

UP-17-01: Alexander Jaust and Jochen Schütz, General linear methods for time-dependent PDEs (pdf, 337 KB)

Ph. D. Theses

Stefan Karpinski, Numerical analysis of an interior penalty discontinuous Galerkin scheme for two phase flow in heterogeneous porous media with discontinuous dynamic capillary pressure effects, Hasselt University, Faculty of Sciences, May 2017

Computational Mathematics Preprints, 2016

Contact en ligging

NuTeC - Nucleair Technologisch Centrum

Technologiecentrum, Wetenschapspark 27, 3590 Diepenbeek